Cargando…
Local Well-Posedness of Skew Mean Curvature Flow for Small Data in [Formula: see text] Dimensions
The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in [Formula: see text] (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844252/ https://www.ncbi.nlm.nih.gov/pubmed/35221347 http://dx.doi.org/10.1007/s00220-021-04303-8 |
Sumario: | The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in [Formula: see text] (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension [Formula: see text] . |
---|