Cargando…

Complexities of complex II: Sulfide metabolism in vivo

High levels of H(2)S produced by gut microbiota can block oxygen utilization by inhibiting mitochondrial complex IV. Kumar et al. have shown how cells respond to this inhibition by using the mitochondrial sulfide oxidation pathway and reverse electron transport. The reverse activity of mitochondrial...

Descripción completa

Detalles Bibliográficos
Autor principal: Cecchini, Gary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844276/
https://www.ncbi.nlm.nih.gov/pubmed/35101450
http://dx.doi.org/10.1016/j.jbc.2022.101661
_version_ 1784651437863600128
author Cecchini, Gary
author_facet Cecchini, Gary
author_sort Cecchini, Gary
collection PubMed
description High levels of H(2)S produced by gut microbiota can block oxygen utilization by inhibiting mitochondrial complex IV. Kumar et al. have shown how cells respond to this inhibition by using the mitochondrial sulfide oxidation pathway and reverse electron transport. The reverse activity of mitochondrial complex II (succinate-quinone oxidoreductase, i.e., fumarate reduction) generates oxidized coenzyme Q, which is then reduced by the mitochondrial sulfide quinone oxidoreductase to oxidize H(2)S. This newly identified redox circuitry points to the importance of complex II reversal in mitochondria during periods of hypoxia and cellular stress.
format Online
Article
Text
id pubmed-8844276
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-88442762022-02-25 Complexities of complex II: Sulfide metabolism in vivo Cecchini, Gary J Biol Chem Editors' Pick Highlight High levels of H(2)S produced by gut microbiota can block oxygen utilization by inhibiting mitochondrial complex IV. Kumar et al. have shown how cells respond to this inhibition by using the mitochondrial sulfide oxidation pathway and reverse electron transport. The reverse activity of mitochondrial complex II (succinate-quinone oxidoreductase, i.e., fumarate reduction) generates oxidized coenzyme Q, which is then reduced by the mitochondrial sulfide quinone oxidoreductase to oxidize H(2)S. This newly identified redox circuitry points to the importance of complex II reversal in mitochondria during periods of hypoxia and cellular stress. American Society for Biochemistry and Molecular Biology 2022-01-29 /pmc/articles/PMC8844276/ /pubmed/35101450 http://dx.doi.org/10.1016/j.jbc.2022.101661 Text en © 2022 The Author https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Editors' Pick Highlight
Cecchini, Gary
Complexities of complex II: Sulfide metabolism in vivo
title Complexities of complex II: Sulfide metabolism in vivo
title_full Complexities of complex II: Sulfide metabolism in vivo
title_fullStr Complexities of complex II: Sulfide metabolism in vivo
title_full_unstemmed Complexities of complex II: Sulfide metabolism in vivo
title_short Complexities of complex II: Sulfide metabolism in vivo
title_sort complexities of complex ii: sulfide metabolism in vivo
topic Editors' Pick Highlight
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844276/
https://www.ncbi.nlm.nih.gov/pubmed/35101450
http://dx.doi.org/10.1016/j.jbc.2022.101661
work_keys_str_mv AT cecchinigary complexitiesofcomplexiisulfidemetabolisminvivo