Cargando…

Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data

Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Gheorghiță, Bogdan A., Itu, Lucian M., Sharma, Puneet, Suciu, Constantin, Wetzl, Jens, Geppert, Christian, Ali, Mohamed Ali Asik, Lee, Aaron M., Piechnik, Stefan K., Neubauer, Stefan, Petersen, Steffen E., Schulz-Menger, Jeanette, Chițiboi, Teodora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844403/
https://www.ncbi.nlm.nih.gov/pubmed/35165324
http://dx.doi.org/10.1038/s41598-022-06315-3
_version_ 1784651467589681152
author Gheorghiță, Bogdan A.
Itu, Lucian M.
Sharma, Puneet
Suciu, Constantin
Wetzl, Jens
Geppert, Christian
Ali, Mohamed Ali Asik
Lee, Aaron M.
Piechnik, Stefan K.
Neubauer, Stefan
Petersen, Steffen E.
Schulz-Menger, Jeanette
Chițiboi, Teodora
author_facet Gheorghiță, Bogdan A.
Itu, Lucian M.
Sharma, Puneet
Suciu, Constantin
Wetzl, Jens
Geppert, Christian
Ali, Mohamed Ali Asik
Lee, Aaron M.
Piechnik, Stefan K.
Neubauer, Stefan
Petersen, Steffen E.
Schulz-Menger, Jeanette
Chițiboi, Teodora
author_sort Gheorghiță, Bogdan A.
collection PubMed
description Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced.
format Online
Article
Text
id pubmed-8844403
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88444032022-02-16 Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data Gheorghiță, Bogdan A. Itu, Lucian M. Sharma, Puneet Suciu, Constantin Wetzl, Jens Geppert, Christian Ali, Mohamed Ali Asik Lee, Aaron M. Piechnik, Stefan K. Neubauer, Stefan Petersen, Steffen E. Schulz-Menger, Jeanette Chițiboi, Teodora Sci Rep Article Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced. Nature Publishing Group UK 2022-02-14 /pmc/articles/PMC8844403/ /pubmed/35165324 http://dx.doi.org/10.1038/s41598-022-06315-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gheorghiță, Bogdan A.
Itu, Lucian M.
Sharma, Puneet
Suciu, Constantin
Wetzl, Jens
Geppert, Christian
Ali, Mohamed Ali Asik
Lee, Aaron M.
Piechnik, Stefan K.
Neubauer, Stefan
Petersen, Steffen E.
Schulz-Menger, Jeanette
Chițiboi, Teodora
Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title_full Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title_fullStr Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title_full_unstemmed Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title_short Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
title_sort improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844403/
https://www.ncbi.nlm.nih.gov/pubmed/35165324
http://dx.doi.org/10.1038/s41598-022-06315-3
work_keys_str_mv AT gheorghitabogdana improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT itulucianm improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT sharmapuneet improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT suciuconstantin improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT wetzljens improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT geppertchristian improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT alimohamedaliasik improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT leeaaronm improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT piechnikstefank improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT neubauerstefan improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT petersensteffene improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT schulzmengerjeanette improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata
AT chitiboiteodora improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata