Cargando…
Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to sy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844403/ https://www.ncbi.nlm.nih.gov/pubmed/35165324 http://dx.doi.org/10.1038/s41598-022-06315-3 |
_version_ | 1784651467589681152 |
---|---|
author | Gheorghiță, Bogdan A. Itu, Lucian M. Sharma, Puneet Suciu, Constantin Wetzl, Jens Geppert, Christian Ali, Mohamed Ali Asik Lee, Aaron M. Piechnik, Stefan K. Neubauer, Stefan Petersen, Steffen E. Schulz-Menger, Jeanette Chițiboi, Teodora |
author_facet | Gheorghiță, Bogdan A. Itu, Lucian M. Sharma, Puneet Suciu, Constantin Wetzl, Jens Geppert, Christian Ali, Mohamed Ali Asik Lee, Aaron M. Piechnik, Stefan K. Neubauer, Stefan Petersen, Steffen E. Schulz-Menger, Jeanette Chițiboi, Teodora |
author_sort | Gheorghiță, Bogdan A. |
collection | PubMed |
description | Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced. |
format | Online Article Text |
id | pubmed-8844403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88444032022-02-16 Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data Gheorghiță, Bogdan A. Itu, Lucian M. Sharma, Puneet Suciu, Constantin Wetzl, Jens Geppert, Christian Ali, Mohamed Ali Asik Lee, Aaron M. Piechnik, Stefan K. Neubauer, Stefan Petersen, Steffen E. Schulz-Menger, Jeanette Chițiboi, Teodora Sci Rep Article Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced. Nature Publishing Group UK 2022-02-14 /pmc/articles/PMC8844403/ /pubmed/35165324 http://dx.doi.org/10.1038/s41598-022-06315-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gheorghiță, Bogdan A. Itu, Lucian M. Sharma, Puneet Suciu, Constantin Wetzl, Jens Geppert, Christian Ali, Mohamed Ali Asik Lee, Aaron M. Piechnik, Stefan K. Neubauer, Stefan Petersen, Steffen E. Schulz-Menger, Jeanette Chițiboi, Teodora Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title | Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title_full | Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title_fullStr | Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title_full_unstemmed | Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title_short | Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
title_sort | improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844403/ https://www.ncbi.nlm.nih.gov/pubmed/35165324 http://dx.doi.org/10.1038/s41598-022-06315-3 |
work_keys_str_mv | AT gheorghitabogdana improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT itulucianm improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT sharmapuneet improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT suciuconstantin improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT wetzljens improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT geppertchristian improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT alimohamedaliasik improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT leeaaronm improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT piechnikstefank improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT neubauerstefan improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT petersensteffene improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT schulzmengerjeanette improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata AT chitiboiteodora improvingrobustnessofautomaticcardiacfunctionquantificationfromcinemagneticresonanceimagingusingsyntheticimagedata |