Cargando…
Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN
Effective and timely antibiotic treatment depends on accurate and rapid in silico antimicrobial-resistant (AMR) predictions. Existing statistical rule-based Mycobacterium tuberculosis (MTB) drug resistance prediction methods using bacterial genomic sequencing data often achieve varying results: high...
Autores principales: | Kuang, Xingyan, Wang, Fan, Hernandez, Kyle M., Zhang, Zhenyu, Grossman, Robert L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844416/ https://www.ncbi.nlm.nih.gov/pubmed/35165358 http://dx.doi.org/10.1038/s41598-022-06449-4 |
Ejemplares similares
-
CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG
por: Simfukwe, Chanda, et al.
Publicado: (2023) -
Are Machine Learning Algorithms More Accurate in Predicting Vegetable and Fruit Consumption Than Traditional Statistical Models? An Exploratory Analysis
por: Côté, Mélina, et al.
Publicado: (2022) -
CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG [Corrigendum]
Publicado: (2023) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
High-Level CNN and Machine Learning Methods for Speaker Recognition
por: Costantini, Giovanni, et al.
Publicado: (2023)