Cargando…
Development of a code-free machine learning model for the classification of cataract surgery phases
This study assessed the performance of automated machine learning (AutoML) in classifying cataract surgery phases from surgical videos. Two ophthalmology trainees without coding experience designed a deep learning model in Google Cloud AutoML Video Classification for the classification of 10 differe...
Autores principales: | Touma, Samir, Antaki, Fares, Duval, Renaud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844421/ https://www.ncbi.nlm.nih.gov/pubmed/35165304 http://dx.doi.org/10.1038/s41598-022-06127-5 |
Ejemplares similares
-
Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience
por: Antaki, Fares, et al.
Publicado: (2020) -
Evaluating the Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings
por: Antaki, Fares, et al.
Publicado: (2023) -
Risk factors for epiretinal membrane formation and peeling following pars plana vitrectomy for primary rhegmatogenous retinal detachment, an OCT guided analysis
por: Szigiato, Andrei-Alexandru, et al.
Publicado: (2022) -
Natural History of Untreated Optic Neuritis Associated With Mild COVID-19 Infection
por: Javidi, Eileen, et al.
Publicado: (2023) -
Endogenous Tuberculous Endophthalmitis and Panophthalmitis: A Systematic Review of Case Reports and Case Series
por: Antaki, Fares, et al.
Publicado: (2020)