Cargando…
Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review
Multi-agent systems and multi-robot systems have been recognized as unique solutions to complex dynamic tasks distributed in space. Their effectiveness in accomplishing these tasks rests upon the design of cooperative control strategies, which is acknowledged to be challenging and nontrivial. In par...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844516/ https://www.ncbi.nlm.nih.gov/pubmed/35178430 http://dx.doi.org/10.3389/frobt.2021.771520 |
_version_ | 1784651494593658880 |
---|---|
author | Kwa , Hian Lee Leong Kit , Jabez Bouffanais , Roland |
author_facet | Kwa , Hian Lee Leong Kit , Jabez Bouffanais , Roland |
author_sort | Kwa , Hian Lee |
collection | PubMed |
description | Multi-agent systems and multi-robot systems have been recognized as unique solutions to complex dynamic tasks distributed in space. Their effectiveness in accomplishing these tasks rests upon the design of cooperative control strategies, which is acknowledged to be challenging and nontrivial. In particular, the effectiveness of these strategies has been shown to be related to the so-called exploration–exploitation dilemma: i.e., the existence of a distinct balance between exploitative actions and exploratory ones while the system is operating. Recent results point to the need for a dynamic exploration–exploitation balance to unlock high levels of flexibility, adaptivity, and swarm intelligence. This important point is especially apparent when dealing with fast-changing environments. Problems involving dynamic environments have been dealt with by different scientific communities using theory, simulations, as well as large-scale experiments. Such results spread across a range of disciplines can hinder one’s ability to understand and manage the intricacies of the exploration–exploitation challenge. In this review, we summarize and categorize the methods used to control the level of exploration and exploitation carried out by an multi-agent systems. Lastly, we discuss the critical need for suitable metrics and benchmark problems to quantitatively assess and compare the levels of exploration and exploitation, as well as the overall performance of a system with a given cooperative control algorithm. |
format | Online Article Text |
id | pubmed-8844516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88445162022-02-16 Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review Kwa , Hian Lee Leong Kit , Jabez Bouffanais , Roland Front Robot AI Robotics and AI Multi-agent systems and multi-robot systems have been recognized as unique solutions to complex dynamic tasks distributed in space. Their effectiveness in accomplishing these tasks rests upon the design of cooperative control strategies, which is acknowledged to be challenging and nontrivial. In particular, the effectiveness of these strategies has been shown to be related to the so-called exploration–exploitation dilemma: i.e., the existence of a distinct balance between exploitative actions and exploratory ones while the system is operating. Recent results point to the need for a dynamic exploration–exploitation balance to unlock high levels of flexibility, adaptivity, and swarm intelligence. This important point is especially apparent when dealing with fast-changing environments. Problems involving dynamic environments have been dealt with by different scientific communities using theory, simulations, as well as large-scale experiments. Such results spread across a range of disciplines can hinder one’s ability to understand and manage the intricacies of the exploration–exploitation challenge. In this review, we summarize and categorize the methods used to control the level of exploration and exploitation carried out by an multi-agent systems. Lastly, we discuss the critical need for suitable metrics and benchmark problems to quantitatively assess and compare the levels of exploration and exploitation, as well as the overall performance of a system with a given cooperative control algorithm. Frontiers Media S.A. 2022-02-01 /pmc/articles/PMC8844516/ /pubmed/35178430 http://dx.doi.org/10.3389/frobt.2021.771520 Text en Copyright © 2022 Kwa , Leong Kit and Bouffanais . https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Robotics and AI Kwa , Hian Lee Leong Kit , Jabez Bouffanais , Roland Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title | Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title_full | Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title_fullStr | Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title_full_unstemmed | Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title_short | Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review |
title_sort | balancing collective exploration and exploitation in multi-agent and multi-robot systems: a review |
topic | Robotics and AI |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844516/ https://www.ncbi.nlm.nih.gov/pubmed/35178430 http://dx.doi.org/10.3389/frobt.2021.771520 |
work_keys_str_mv | AT kwahianlee balancingcollectiveexplorationandexploitationinmultiagentandmultirobotsystemsareview AT leongkitjabez balancingcollectiveexplorationandexploitationinmultiagentandmultirobotsystemsareview AT bouffanaisroland balancingcollectiveexplorationandexploitationinmultiagentandmultirobotsystemsareview |