Cargando…

Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis

PURPOSE: This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer. METHODS: A systematic literature review and meta-analysis was carried out...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortiz, Andrés Felipe Herrera, Camacho, Tatiana Cadavid, Vásquez, Andrés Francisco, del Castillo Herazo, Valeria, Neira, Juan Guillermo Arámbula, Yepes, María Mónica, Camacho, Eduard Cadavid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844749/
https://www.ncbi.nlm.nih.gov/pubmed/35198656
http://dx.doi.org/10.1016/j.ejro.2022.100400
_version_ 1784651536706568192
author Ortiz, Andrés Felipe Herrera
Camacho, Tatiana Cadavid
Vásquez, Andrés Francisco
del Castillo Herazo, Valeria
Neira, Juan Guillermo Arámbula
Yepes, María Mónica
Camacho, Eduard Cadavid
author_facet Ortiz, Andrés Felipe Herrera
Camacho, Tatiana Cadavid
Vásquez, Andrés Francisco
del Castillo Herazo, Valeria
Neira, Juan Guillermo Arámbula
Yepes, María Mónica
Camacho, Eduard Cadavid
author_sort Ortiz, Andrés Felipe Herrera
collection PubMed
description PURPOSE: This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer. METHODS: A systematic literature review and meta-analysis was carried out in 6 databases between January 2002 and July 2021. The relationship between clinical and CT patterns to detect EGFR mutation was measured and pooled using odds ratios (OR). These results were used to build several mathematical models to predict EGFR mutation. RESULTS: 34 retrospective diagnostic accuracy studies met the inclusion and exclusion criteria. The results showed that ground-glass opacities (GGO) have an OR of 1.86 (95%CI 1.34 −2.57), air bronchogram OR 1.60 (95%CI 1.38 – 1.85), vascular convergence OR 1.39 (95%CI 1.12 – 1.74), pleural retraction OR 1.99 (95%CI 1.72 – 2.31), spiculation OR 1.42 (95%CI 1.19 – 1.70), cavitation OR 0.70 (95%CI 0.57 – 0.86), early disease stage OR 1.58 (95%CI 1.14 – 2.18), non-smoker status OR 2.79 (95%CI 2.34 – 3.31), female gender OR 2.33 (95%CI 1.97 – 2.75). A mathematical model was built, including all clinical and CT patterns assessed, showing an area under the curve (AUC) of 0.81. CONCLUSIONS: GGO, air bronchogram, vascular convergence, pleural retraction, spiculated margins, early disease stage, female gender, and non-smoking status are significant risk factors for EGFR mutation. At the same time, cavitation is a protective factor for EGFR mutation. The mathematical model built acts as a good predictor for EGFR mutation in patients with lung adenocarcinoma.
format Online
Article
Text
id pubmed-8844749
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88447492022-02-22 Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis Ortiz, Andrés Felipe Herrera Camacho, Tatiana Cadavid Vásquez, Andrés Francisco del Castillo Herazo, Valeria Neira, Juan Guillermo Arámbula Yepes, María Mónica Camacho, Eduard Cadavid Eur J Radiol Open Article PURPOSE: This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer. METHODS: A systematic literature review and meta-analysis was carried out in 6 databases between January 2002 and July 2021. The relationship between clinical and CT patterns to detect EGFR mutation was measured and pooled using odds ratios (OR). These results were used to build several mathematical models to predict EGFR mutation. RESULTS: 34 retrospective diagnostic accuracy studies met the inclusion and exclusion criteria. The results showed that ground-glass opacities (GGO) have an OR of 1.86 (95%CI 1.34 −2.57), air bronchogram OR 1.60 (95%CI 1.38 – 1.85), vascular convergence OR 1.39 (95%CI 1.12 – 1.74), pleural retraction OR 1.99 (95%CI 1.72 – 2.31), spiculation OR 1.42 (95%CI 1.19 – 1.70), cavitation OR 0.70 (95%CI 0.57 – 0.86), early disease stage OR 1.58 (95%CI 1.14 – 2.18), non-smoker status OR 2.79 (95%CI 2.34 – 3.31), female gender OR 2.33 (95%CI 1.97 – 2.75). A mathematical model was built, including all clinical and CT patterns assessed, showing an area under the curve (AUC) of 0.81. CONCLUSIONS: GGO, air bronchogram, vascular convergence, pleural retraction, spiculated margins, early disease stage, female gender, and non-smoking status are significant risk factors for EGFR mutation. At the same time, cavitation is a protective factor for EGFR mutation. The mathematical model built acts as a good predictor for EGFR mutation in patients with lung adenocarcinoma. Elsevier 2022-02-07 /pmc/articles/PMC8844749/ /pubmed/35198656 http://dx.doi.org/10.1016/j.ejro.2022.100400 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Ortiz, Andrés Felipe Herrera
Camacho, Tatiana Cadavid
Vásquez, Andrés Francisco
del Castillo Herazo, Valeria
Neira, Juan Guillermo Arámbula
Yepes, María Mónica
Camacho, Eduard Cadavid
Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title_full Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title_fullStr Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title_full_unstemmed Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title_short Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis
title_sort clinical and ct patterns to predict egfr mutation in patients with non-small cell lung cancer: a systematic literature review and meta-analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844749/
https://www.ncbi.nlm.nih.gov/pubmed/35198656
http://dx.doi.org/10.1016/j.ejro.2022.100400
work_keys_str_mv AT ortizandresfelipeherrera clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT camachotatianacadavid clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT vasquezandresfrancisco clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT delcastilloherazovaleria clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT neirajuanguillermoarambula clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT yepesmariamonica clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis
AT camachoeduardcadavid clinicalandctpatternstopredictegfrmutationinpatientswithnonsmallcelllungcancerasystematicliteraturereviewandmetaanalysis