Cargando…
Effect of THz spectra of L-Arginine molecules by the combination of water molecules
Most biomolecules are biologically active only in water; hence, it is worth investigating whether THz spectra of biomolecules are affected by the combination of water molecules and biomolecules. In this report, by combining the sample cell with the THz-TDS system, the THz spectra of L-Arginine cryst...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844811/ https://www.ncbi.nlm.nih.gov/pubmed/35198864 http://dx.doi.org/10.1016/j.isci.2022.103788 |
Sumario: | Most biomolecules are biologically active only in water; hence, it is worth investigating whether THz spectra of biomolecules are affected by the combination of water molecules and biomolecules. In this report, by combining the sample cell with the THz-TDS system, the THz spectra of L-Arginine crystal as well as its hydrate and aqueous solution are measured. The experimental results show that L-Arginine crystal and its hydrate share the same three absorption peaks at 0.99, 1.46, and 1.7 THz, respectively. But the trend of characteristic absorption spectrum of L-arginine solution is almost identical to that of free water. Because the contents of free water and hydrated water are different in many diseased and normal tissues, the diseased tissues can be detected according to the difference in THz spectral information. The proposed approach provides a reliable means for the detection of pathological changes of active molecules and tissues. |
---|