Cargando…

Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently inva...

Descripción completa

Detalles Bibliográficos
Autores principales: Konietzny, Anja, Grendel, Jasper, Kadek, Alan, Bucher, Michael, Han, Yuhao, Hertrich, Nathalie, Dekkers, Dick H W, Demmers, Jeroen A A, Grünewald, Kay, Uetrecht, Charlotte, Mikhaylova, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844991/
https://www.ncbi.nlm.nih.gov/pubmed/34935159
http://dx.doi.org/10.15252/embj.2020106523
_version_ 1784651583821185024
author Konietzny, Anja
Grendel, Jasper
Kadek, Alan
Bucher, Michael
Han, Yuhao
Hertrich, Nathalie
Dekkers, Dick H W
Demmers, Jeroen A A
Grünewald, Kay
Uetrecht, Charlotte
Mikhaylova, Marina
author_facet Konietzny, Anja
Grendel, Jasper
Kadek, Alan
Bucher, Michael
Han, Yuhao
Hertrich, Nathalie
Dekkers, Dick H W
Demmers, Jeroen A A
Grünewald, Kay
Uetrecht, Charlotte
Mikhaylova, Marina
author_sort Konietzny, Anja
collection PubMed
description Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin‐based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca(2+) sensor caldendrin, a brain‐specific homolog of the well‐known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V‐dependent pathway. We propose that caldendrin transforms myosin into a stationary F‐actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.
format Online
Article
Text
id pubmed-8844991
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88449912022-02-27 Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines Konietzny, Anja Grendel, Jasper Kadek, Alan Bucher, Michael Han, Yuhao Hertrich, Nathalie Dekkers, Dick H W Demmers, Jeroen A A Grünewald, Kay Uetrecht, Charlotte Mikhaylova, Marina EMBO J Articles Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin‐based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca(2+) sensor caldendrin, a brain‐specific homolog of the well‐known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V‐dependent pathway. We propose that caldendrin transforms myosin into a stationary F‐actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines. John Wiley and Sons Inc. 2021-12-22 2022-02-15 /pmc/articles/PMC8844991/ /pubmed/34935159 http://dx.doi.org/10.15252/embj.2020106523 Text en © 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Konietzny, Anja
Grendel, Jasper
Kadek, Alan
Bucher, Michael
Han, Yuhao
Hertrich, Nathalie
Dekkers, Dick H W
Demmers, Jeroen A A
Grünewald, Kay
Uetrecht, Charlotte
Mikhaylova, Marina
Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title_full Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title_fullStr Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title_full_unstemmed Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title_short Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
title_sort caldendrin and myosin v regulate synaptic spine apparatus localization via er stabilization in dendritic spines
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844991/
https://www.ncbi.nlm.nih.gov/pubmed/34935159
http://dx.doi.org/10.15252/embj.2020106523
work_keys_str_mv AT konietznyanja caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT grendeljasper caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT kadekalan caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT buchermichael caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT hanyuhao caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT hertrichnathalie caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT dekkersdickhw caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT demmersjeroenaa caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT grunewaldkay caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT uetrechtcharlotte caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines
AT mikhaylovamarina caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines