Cargando…
Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently inva...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844991/ https://www.ncbi.nlm.nih.gov/pubmed/34935159 http://dx.doi.org/10.15252/embj.2020106523 |
_version_ | 1784651583821185024 |
---|---|
author | Konietzny, Anja Grendel, Jasper Kadek, Alan Bucher, Michael Han, Yuhao Hertrich, Nathalie Dekkers, Dick H W Demmers, Jeroen A A Grünewald, Kay Uetrecht, Charlotte Mikhaylova, Marina |
author_facet | Konietzny, Anja Grendel, Jasper Kadek, Alan Bucher, Michael Han, Yuhao Hertrich, Nathalie Dekkers, Dick H W Demmers, Jeroen A A Grünewald, Kay Uetrecht, Charlotte Mikhaylova, Marina |
author_sort | Konietzny, Anja |
collection | PubMed |
description | Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin‐based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca(2+) sensor caldendrin, a brain‐specific homolog of the well‐known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V‐dependent pathway. We propose that caldendrin transforms myosin into a stationary F‐actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines. |
format | Online Article Text |
id | pubmed-8844991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88449912022-02-27 Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines Konietzny, Anja Grendel, Jasper Kadek, Alan Bucher, Michael Han, Yuhao Hertrich, Nathalie Dekkers, Dick H W Demmers, Jeroen A A Grünewald, Kay Uetrecht, Charlotte Mikhaylova, Marina EMBO J Articles Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca(2+)) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin‐based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca(2+) sensor caldendrin, a brain‐specific homolog of the well‐known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V‐dependent pathway. We propose that caldendrin transforms myosin into a stationary F‐actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines. John Wiley and Sons Inc. 2021-12-22 2022-02-15 /pmc/articles/PMC8844991/ /pubmed/34935159 http://dx.doi.org/10.15252/embj.2020106523 Text en © 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Konietzny, Anja Grendel, Jasper Kadek, Alan Bucher, Michael Han, Yuhao Hertrich, Nathalie Dekkers, Dick H W Demmers, Jeroen A A Grünewald, Kay Uetrecht, Charlotte Mikhaylova, Marina Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title | Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title_full | Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title_fullStr | Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title_full_unstemmed | Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title_short | Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines |
title_sort | caldendrin and myosin v regulate synaptic spine apparatus localization via er stabilization in dendritic spines |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844991/ https://www.ncbi.nlm.nih.gov/pubmed/34935159 http://dx.doi.org/10.15252/embj.2020106523 |
work_keys_str_mv | AT konietznyanja caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT grendeljasper caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT kadekalan caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT buchermichael caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT hanyuhao caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT hertrichnathalie caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT dekkersdickhw caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT demmersjeroenaa caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT grunewaldkay caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT uetrechtcharlotte caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines AT mikhaylovamarina caldendrinandmyosinvregulatesynapticspineapparatuslocalizationviaerstabilizationindendriticspines |