Cargando…

Polyelectrolyte Complex Hollow Fiber Membranes Prepared via Aqueous Phase Separation

[Image: see text] Hollow fiber (HF) membrane geometry is the preferred choice for most commercial membrane operations. Such fibers are conventionally prepared via the non-solvent-induced phase separation technique, which heavily relies on hazardous and reprotoxic organic solvents such as N-methyl py...

Descripción completa

Detalles Bibliográficos
Autores principales: Baig, Muhammad Irshad, Pejman, Mehdi, Willott, Joshua D., Tiraferri, Alberto, de Vos, Wiebe M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845049/
https://www.ncbi.nlm.nih.gov/pubmed/35178524
http://dx.doi.org/10.1021/acsapm.1c01464
Descripción
Sumario:[Image: see text] Hollow fiber (HF) membrane geometry is the preferred choice for most commercial membrane operations. Such fibers are conventionally prepared via the non-solvent-induced phase separation technique, which heavily relies on hazardous and reprotoxic organic solvents such as N-methyl pyrrolidone. A more sustainable alternative, i.e., aqueous phase separation (APS), was introduced recently that utilizes water as a solvent and non-solvent for the production of polymeric membranes. Herein, for the first time, we demonstrate the preparation of sustainable and functional HF membranes via the APS technique in a dry-jet wet spinning process. The dope solution comprising poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI) at high pH along with an aqueous bore liquid is pushed through a single orifice spinneret into a low pH acetate buffer coagulation bath. Here, PEI becomes charged resulting in the formation of a polyelectrolyte complex with PSS. The compositions of the bore liquid and coagulation bath were systematically varied to study their effect on the structure and performance of the HF membranes. The microfiltration-type membranes (permeability ∼500 to 800 L·m(–2)·h(–1)·bar(–1)) with complete retention of emulsion droplets were obtained when the precipitation rate was slow. Increasing the concentration of the acetate buffer in the bath led to the increase in precipitation rate resulting in ultrafiltration-type membranes (permeability ∼12 to 15 L·m(–2)·h(–1)·bar(–1)) having molecular weight cut-offs in the range of ∼7.8–11.6 kDa. The research presented in this work confirms the versatility of APS and moves it another step closer to large-scale use.