Cargando…
Sex-biased islet β cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males
A heterozygous missense mutation of the islet β cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset β cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845126/ https://www.ncbi.nlm.nih.gov/pubmed/34644565 http://dx.doi.org/10.1016/j.celrep.2021.109813 |
Sumario: | A heterozygous missense mutation of the islet β cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset β cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how β cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafA(S64F/+)) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafA(S64F/+) males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca(2+) signaling, DNA damage, aging, and senescence. MAFA(S64F) production in male human β cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFA(WT). These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFA(S64F) carriers in a sex-biased manner. |
---|