Cargando…
Reevaluating scorpion ecomorphs using a naïve approach
BACKGROUND: Ecomorphs create the opportunity to investigate ecological adaptation because they encompass organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions have been empirically assigned to ecomorphs based on the characteristic morpholog...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845257/ https://www.ncbi.nlm.nih.gov/pubmed/35164666 http://dx.doi.org/10.1186/s12862-022-01968-0 |
_version_ | 1784651634648809472 |
---|---|
author | Coelho, Pedro Kaliontzopoulou, Antigoni Sousa, Pedro Stockmann, Mark van der Meijden, Arie |
author_facet | Coelho, Pedro Kaliontzopoulou, Antigoni Sousa, Pedro Stockmann, Mark van der Meijden, Arie |
author_sort | Coelho, Pedro |
collection | PubMed |
description | BACKGROUND: Ecomorphs create the opportunity to investigate ecological adaptation because they encompass organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions have been empirically assigned to ecomorphs based on the characteristic morphologies that rock, sand, vegetation, underground, and surface dwellers assume. This study aims to independently test the existence of scorpion ecomorphs by quantifying the association between their morphology and ecology across 61 species, representing 14 families of the Scorpiones order. RESULTS: Without a priori categorization of species into ecomorphs, we identified four groups based on microhabitat descriptors, which reflect how scorpion ecospace is clustered. Moreover, these microhabitat groups, i.e., ecotypes, have significantly divergent morphologies; therefore, they represent ecomorphs. These ecomorphs largely correspond with the ones previously described in the literature. Therefore, we retained the names Lithophilous, Psammophilous, and Pelophilous, and proposed the name Phytophilous for vegetation dwellers. Finally, we sought to map the morphology-ecology association in scorpions and found that the morphological regions most tightly associated with ecology are at the extremities. Moreover, the major trend in ecomorphological covariation is that longer walking legs and relatively slender pedipalps (pincers) are associated with sandy microhabitats, while the inverse morphological proportions are associated with rocky microhabitats. CONCLUSIONS: Scorpion ecomorphs are validated in a naïve approach, from ecological descriptors and whole body anatomy. This places them on a more solid quantitative footing for future studies of ecological adaptation in scorpions. Our results verify most of the previously defined ecomorphotypes and could be used as a current practice to understand the adaptive significance of ecological morphology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-022-01968-0. |
format | Online Article Text |
id | pubmed-8845257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-88452572022-02-16 Reevaluating scorpion ecomorphs using a naïve approach Coelho, Pedro Kaliontzopoulou, Antigoni Sousa, Pedro Stockmann, Mark van der Meijden, Arie BMC Ecol Evol Research BACKGROUND: Ecomorphs create the opportunity to investigate ecological adaptation because they encompass organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions have been empirically assigned to ecomorphs based on the characteristic morphologies that rock, sand, vegetation, underground, and surface dwellers assume. This study aims to independently test the existence of scorpion ecomorphs by quantifying the association between their morphology and ecology across 61 species, representing 14 families of the Scorpiones order. RESULTS: Without a priori categorization of species into ecomorphs, we identified four groups based on microhabitat descriptors, which reflect how scorpion ecospace is clustered. Moreover, these microhabitat groups, i.e., ecotypes, have significantly divergent morphologies; therefore, they represent ecomorphs. These ecomorphs largely correspond with the ones previously described in the literature. Therefore, we retained the names Lithophilous, Psammophilous, and Pelophilous, and proposed the name Phytophilous for vegetation dwellers. Finally, we sought to map the morphology-ecology association in scorpions and found that the morphological regions most tightly associated with ecology are at the extremities. Moreover, the major trend in ecomorphological covariation is that longer walking legs and relatively slender pedipalps (pincers) are associated with sandy microhabitats, while the inverse morphological proportions are associated with rocky microhabitats. CONCLUSIONS: Scorpion ecomorphs are validated in a naïve approach, from ecological descriptors and whole body anatomy. This places them on a more solid quantitative footing for future studies of ecological adaptation in scorpions. Our results verify most of the previously defined ecomorphotypes and could be used as a current practice to understand the adaptive significance of ecological morphology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-022-01968-0. BioMed Central 2022-02-14 /pmc/articles/PMC8845257/ /pubmed/35164666 http://dx.doi.org/10.1186/s12862-022-01968-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Coelho, Pedro Kaliontzopoulou, Antigoni Sousa, Pedro Stockmann, Mark van der Meijden, Arie Reevaluating scorpion ecomorphs using a naïve approach |
title | Reevaluating scorpion ecomorphs using a naïve approach |
title_full | Reevaluating scorpion ecomorphs using a naïve approach |
title_fullStr | Reevaluating scorpion ecomorphs using a naïve approach |
title_full_unstemmed | Reevaluating scorpion ecomorphs using a naïve approach |
title_short | Reevaluating scorpion ecomorphs using a naïve approach |
title_sort | reevaluating scorpion ecomorphs using a naïve approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845257/ https://www.ncbi.nlm.nih.gov/pubmed/35164666 http://dx.doi.org/10.1186/s12862-022-01968-0 |
work_keys_str_mv | AT coelhopedro reevaluatingscorpionecomorphsusinganaiveapproach AT kaliontzopoulouantigoni reevaluatingscorpionecomorphsusinganaiveapproach AT sousapedro reevaluatingscorpionecomorphsusinganaiveapproach AT stockmannmark reevaluatingscorpionecomorphsusinganaiveapproach AT vandermeijdenarie reevaluatingscorpionecomorphsusinganaiveapproach |