Cargando…
Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes
Tribe Lilieae, encompassing Lilium, Notholirion, Cardiocrinum, and Fritillaria, includes economically important crops with a horticultural and medicinal value. It is considered to be a core lineage of Liliaceae, but phylogenetic relationships within it, and the timing of the origin of individual cla...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845482/ https://www.ncbi.nlm.nih.gov/pubmed/35178055 http://dx.doi.org/10.3389/fpls.2021.699226 |
_version_ | 1784651685519425536 |
---|---|
author | Li, Juan Cai, Jing Qin, Huan-Huan Price, Megan Zhang, Zhen Yu, Yan Xie, Deng-Feng He, Xing-Jin Zhou, Song-Dong Gao, Xin-Fen |
author_facet | Li, Juan Cai, Jing Qin, Huan-Huan Price, Megan Zhang, Zhen Yu, Yan Xie, Deng-Feng He, Xing-Jin Zhou, Song-Dong Gao, Xin-Fen |
author_sort | Li, Juan |
collection | PubMed |
description | Tribe Lilieae, encompassing Lilium, Notholirion, Cardiocrinum, and Fritillaria, includes economically important crops with a horticultural and medicinal value. It is considered to be a core lineage of Liliaceae, but phylogenetic relationships within it, and the timing of the origin of individual clades, remain incompletely resolved. To address these issues, we reconstructed the evolutionary history of the tribe. We sequenced 45 Liliaceae plastomes and combined them with publicly available data (for a total of 139 plastomes) to explore the systematics, origin, divergence, and evolution of Lilieae. Our taxon sampling covers all ten sections of Lilium, all Cardiocrinum species, three Notholirion species, and major phylogenetic clades of Fritillaria. Our phylogenetic analysis confirms the monophyly of major sections/subgenera of Lilium and Fritillaria with strong support. We dated the origin of Lilieae to the Eocene, with genera and species radiations inferred to have occurred in the Miocene. The reconstruction of the ancestral area implies that Lilieae may have originated from the Qinghai-Tibet Plateau (QTP): the Himalayas and Hengduan Mountains and uplifting of the QTP likely promoted divergence within the tribe. Ancestral-state reconstructions of the bulb component number (including bulblets and scales) show a strong correlation with the genus-level phylogenetic diversity in Lilieae. They also predict that the most recent common ancestor of Lilieae had bulbs with numerous bulblets. Based on these observations, we predicted that climatic oscillations associated with the QTP uplift played an important role in the evolution of the Lilieae bulb. Our findings provide a well-supported picture of evolutionary relationships and a useful framework for understanding the pathway of bulb evolution within Lilieae, contributing to a better understanding of the evolutionary history of lilies. |
format | Online Article Text |
id | pubmed-8845482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88454822022-02-16 Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes Li, Juan Cai, Jing Qin, Huan-Huan Price, Megan Zhang, Zhen Yu, Yan Xie, Deng-Feng He, Xing-Jin Zhou, Song-Dong Gao, Xin-Fen Front Plant Sci Plant Science Tribe Lilieae, encompassing Lilium, Notholirion, Cardiocrinum, and Fritillaria, includes economically important crops with a horticultural and medicinal value. It is considered to be a core lineage of Liliaceae, but phylogenetic relationships within it, and the timing of the origin of individual clades, remain incompletely resolved. To address these issues, we reconstructed the evolutionary history of the tribe. We sequenced 45 Liliaceae plastomes and combined them with publicly available data (for a total of 139 plastomes) to explore the systematics, origin, divergence, and evolution of Lilieae. Our taxon sampling covers all ten sections of Lilium, all Cardiocrinum species, three Notholirion species, and major phylogenetic clades of Fritillaria. Our phylogenetic analysis confirms the monophyly of major sections/subgenera of Lilium and Fritillaria with strong support. We dated the origin of Lilieae to the Eocene, with genera and species radiations inferred to have occurred in the Miocene. The reconstruction of the ancestral area implies that Lilieae may have originated from the Qinghai-Tibet Plateau (QTP): the Himalayas and Hengduan Mountains and uplifting of the QTP likely promoted divergence within the tribe. Ancestral-state reconstructions of the bulb component number (including bulblets and scales) show a strong correlation with the genus-level phylogenetic diversity in Lilieae. They also predict that the most recent common ancestor of Lilieae had bulbs with numerous bulblets. Based on these observations, we predicted that climatic oscillations associated with the QTP uplift played an important role in the evolution of the Lilieae bulb. Our findings provide a well-supported picture of evolutionary relationships and a useful framework for understanding the pathway of bulb evolution within Lilieae, contributing to a better understanding of the evolutionary history of lilies. Frontiers Media S.A. 2022-02-01 /pmc/articles/PMC8845482/ /pubmed/35178055 http://dx.doi.org/10.3389/fpls.2021.699226 Text en Copyright © 2022 Li, Cai, Qin, Price, Zhang, Yu, Xie, He, Zhou and Gao. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Li, Juan Cai, Jing Qin, Huan-Huan Price, Megan Zhang, Zhen Yu, Yan Xie, Deng-Feng He, Xing-Jin Zhou, Song-Dong Gao, Xin-Fen Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title | Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title_full | Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title_fullStr | Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title_full_unstemmed | Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title_short | Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes |
title_sort | phylogeny, age, and evolution of tribe lilieae (liliaceae) based on whole plastid genomes |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845482/ https://www.ncbi.nlm.nih.gov/pubmed/35178055 http://dx.doi.org/10.3389/fpls.2021.699226 |
work_keys_str_mv | AT lijuan phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT caijing phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT qinhuanhuan phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT pricemegan phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT zhangzhen phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT yuyan phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT xiedengfeng phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT hexingjin phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT zhousongdong phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes AT gaoxinfen phylogenyageandevolutionoftribelilieaeliliaceaebasedonwholeplastidgenomes |