Cargando…
Application of machine learning methods in clinical trials for precision medicine
OBJECTIVE: A key component for precision medicine is a good prediction algorithm for patients’ response to treatments. We aim to implement machine learning (ML) algorithms into the response-adaptive randomization (RAR) design and improve the treatment outcomes. MATERIALS AND METHODS: We incorporated...
Autores principales: | Wang, Yizhuo, Carter, Bing Z, Li, Ziyi, Huang, Xuelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846336/ https://www.ncbi.nlm.nih.gov/pubmed/35178503 http://dx.doi.org/10.1093/jamiaopen/ooab107 |
Ejemplares similares
-
The cancer precision medicine knowledge base for structured clinical-grade mutations and interpretations
por: Huang, Linda, et al.
Publicado: (2017) -
Quantifying representativeness in randomized clinical trials using machine learning fairness metrics
por: Qi, Miao, et al.
Publicado: (2021) -
ClinicNet: machine learning for personalized clinical order set recommendations
por: Wang, Jonathan X, et al.
Publicado: (2020) -
dipm: an R package implementing the Depth Importance in Precision Medicine (DIPM) tree and Forest-based method
por: Chen, Victoria, et al.
Publicado: (2022) -
POOL server: machine learning application for functional site prediction in proteins
por: Somarowthu, Srinivas, et al.
Publicado: (2012)