Cargando…

A DCL3 dicing code within Pol IV-RDR2 transcripts diversifies the siRNA pool guiding RNA-directed DNA methylation

In plants, selfish genetic elements, including retrotransposons and DNA viruses, are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp that are synthesized by NUCLEA...

Descripción completa

Detalles Bibliográficos
Autores principales: Loffer, Andrew, Singh, Jasleen, Fukudome, Akihito, Mishra, Vibhor, Wang, Feng, Pikaard, Craig S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846587/
https://www.ncbi.nlm.nih.gov/pubmed/35098919
http://dx.doi.org/10.7554/eLife.73260
Descripción
Sumario:In plants, selfish genetic elements, including retrotransposons and DNA viruses, are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp that are synthesized by NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). We show that Pol IV’s choice of initiating nucleotide, RDR2’s initiation 1–2 nt internal to Pol IV transcript ends and RDR2’s terminal transferase activity collectively yield a code that influences which precursor end is diced and whether 24 or 23 nt siRNAs are produced. By diversifying the size, sequence, and strand specificity of siRNAs derived from a given precursor, alternative patterns of DCL3 dicing allow for maximal siRNA coverage at methylated target loci.