Cargando…
An introduction to the full random effects model
The full random‐effects model (FREM) is a method for determining covariate effects in mixed‐effects models. Covariates are modeled as random variables, described by mean and variance. The method captures the covariate effects in estimated covariances between individual parameters and covariates. Thi...
Autores principales: | Yngman, Gunnar, Bjugård Nyberg, Henrik, Nyberg, Joakim, Jonsson, E. Niclas, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846630/ https://www.ncbi.nlm.nih.gov/pubmed/34984855 http://dx.doi.org/10.1002/psp4.12741 |
Ejemplares similares
-
Saddle-Reset for Robust Parameter Estimation and
Identifiability Analysis of Nonlinear Mixed Effects Models
por: Bjugård Nyberg, Henrik, et al.
Publicado: (2020) -
A quantitative approach to the choice of number of samples for percentile estimation in bootstrap and visual predictive check analyses
por: Jonsson, E. Niclas, et al.
Publicado: (2022) -
Comparison of covariate selection methods with correlated covariates: prior information versus data information, or a mixture of both?
por: Chasseloup, Estelle, et al.
Publicado: (2020) -
Sensitivity of Pegfilgrastim Pharmacokinetic and Pharmacodynamic Parameters to Product Differences in Similarity Studies
por: Brekkan, Ari, et al.
Publicado: (2019) -
Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy
por: Svensson, Elin M., et al.
Publicado: (2017)