Cargando…
How inhibitory neurons increase information transmission under threshold modulation
Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground segmentation, motion detection, stimulus anticipation, and shifts in attention all involve changes in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this modulati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846953/ https://www.ncbi.nlm.nih.gov/pubmed/34038717 http://dx.doi.org/10.1016/j.celrep.2021.109158 |
_version_ | 1784651947111874560 |
---|---|
author | Hsu, Wei-Mien M. Kastner, David B. Baccus, Stephen A. Sharpee, Tatyana O. |
author_facet | Hsu, Wei-Mien M. Kastner, David B. Baccus, Stephen A. Sharpee, Tatyana O. |
author_sort | Hsu, Wei-Mien M. |
collection | PubMed |
description | Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground segmentation, motion detection, stimulus anticipation, and shifts in attention all involve changes in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this modulation reduces the accuracy with which neurons can represent their primary inputs, creating a mystery as to why threshold modulation is so widespread in the brain. We find that modulation is less detrimental than other forms of neuronal variability and that its negative effects can be nearly completely eliminated if modulation is applied selectively to sparsely responding neurons in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing information transmission under modulation. |
format | Online Article Text |
id | pubmed-8846953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88469532022-02-15 How inhibitory neurons increase information transmission under threshold modulation Hsu, Wei-Mien M. Kastner, David B. Baccus, Stephen A. Sharpee, Tatyana O. Cell Rep Article Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground segmentation, motion detection, stimulus anticipation, and shifts in attention all involve changes in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this modulation reduces the accuracy with which neurons can represent their primary inputs, creating a mystery as to why threshold modulation is so widespread in the brain. We find that modulation is less detrimental than other forms of neuronal variability and that its negative effects can be nearly completely eliminated if modulation is applied selectively to sparsely responding neurons in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing information transmission under modulation. 2021-05-25 /pmc/articles/PMC8846953/ /pubmed/34038717 http://dx.doi.org/10.1016/j.celrep.2021.109158 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Hsu, Wei-Mien M. Kastner, David B. Baccus, Stephen A. Sharpee, Tatyana O. How inhibitory neurons increase information transmission under threshold modulation |
title | How inhibitory neurons increase information transmission under threshold modulation |
title_full | How inhibitory neurons increase information transmission under threshold modulation |
title_fullStr | How inhibitory neurons increase information transmission under threshold modulation |
title_full_unstemmed | How inhibitory neurons increase information transmission under threshold modulation |
title_short | How inhibitory neurons increase information transmission under threshold modulation |
title_sort | how inhibitory neurons increase information transmission under threshold modulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846953/ https://www.ncbi.nlm.nih.gov/pubmed/34038717 http://dx.doi.org/10.1016/j.celrep.2021.109158 |
work_keys_str_mv | AT hsuweimienm howinhibitoryneuronsincreaseinformationtransmissionunderthresholdmodulation AT kastnerdavidb howinhibitoryneuronsincreaseinformationtransmissionunderthresholdmodulation AT baccusstephena howinhibitoryneuronsincreaseinformationtransmissionunderthresholdmodulation AT sharpeetatyanao howinhibitoryneuronsincreaseinformationtransmissionunderthresholdmodulation |