Cargando…

Optimal Deep-Learning-Enabled Intelligent Decision Support System for SARS-CoV-2 Classification

Intelligent decision support systems (IDSS) for complex healthcare applications aim to examine a large quantity of complex healthcare data to assist doctors, researchers, pathologists, and other healthcare professionals. A decision support system (DSS) is an intelligent system that provides improved...

Descripción completa

Detalles Bibliográficos
Autores principales: Dutta, Ashit Kumar, Aljarallah, Nasser Ali, Abirami, T., Sundarrajan, M., Kadry, Seifedine, Nam, Yunyoung, Jeong, Chang-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846984/
https://www.ncbi.nlm.nih.gov/pubmed/35178226
http://dx.doi.org/10.1155/2022/4130674
Descripción
Sumario:Intelligent decision support systems (IDSS) for complex healthcare applications aim to examine a large quantity of complex healthcare data to assist doctors, researchers, pathologists, and other healthcare professionals. A decision support system (DSS) is an intelligent system that provides improved assistance in various stages of health-related disease diagnosis. At the same time, the SARS-CoV-2 infection that causes COVID-19 disease has spread globally from the beginning of 2020. Several research works reported that the imaging pattern based on computed tomography (CT) can be utilized to detect SARS-CoV-2. Earlier identification and detection of the diseases is essential to offer adequate treatment and avoid the severity of the disease. With this motivation, this study develops an efficient deep-learning-based fusion model with swarm intelligence (EDLFM-SI) for SARS-CoV-2 identification. The proposed EDLFM-SI technique aims to detect and classify the SARS-CoV-2 infection or not. Also, the EDLFM-SI technique comprises various processes, namely, data augmentation, preprocessing, feature extraction, and classification. Moreover, a fusion of capsule network (CapsNet) and MobileNet based feature extractors are employed. Besides, a water strider algorithm (WSA) is applied to fine-tune the hyperparameters involved in the DL models. Finally, a cascaded neural network (CNN) classifier is applied for detecting the existence of SARS-CoV-2. In order to showcase the improved performance of the EDLFM-SI technique, a wide range of simulations take place on the COVID-19 CT data set and the SARS-CoV-2 CT scan data set. The simulation outcomes highlighted the supremacy of the EDLFM-SI technique over the recent approaches.