Cargando…
Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data
Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and compet...
Autores principales: | Li, Shanpeng, Li, Ning, Wang, Hong, Zhou, Jin, Zhou, Hua, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846996/ https://www.ncbi.nlm.nih.gov/pubmed/35178111 http://dx.doi.org/10.1155/2022/1362913 |
Ejemplares similares
-
Semiparametric marginal regression for clustered competing risks data with missing cause of failure
por: Zhou, Wenxian, et al.
Publicado: (2022) -
Semiparametric Theory and Missing Data
por: Tsiatis, Anastasios A
Publicado: (2006) -
A Bayesian Semiparametric Regression Model for Joint Analysis of Microbiome Data
por: Lee, Juhee, et al.
Publicado: (2018) -
Semiparametric regression and risk prediction with competing risks data under missing cause of failure
por: Bakoyannis, Giorgos, et al.
Publicado: (2020) -
An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
por: Fang, Kai-Tai, et al.
Publicado: (2013)