Cargando…
A semi-parametric, state-space compartmental model with time-dependent parameters for forecasting COVID-19 cases, hospitalizations and deaths
Short-term forecasts of the dynamics of coronavirus disease 2019 (COVID-19) in the period up to its decline following mass vaccination was a task that received much attention but proved difficult to do with high accuracy. However, the availability of standardized forecasts and versioned datasets fro...
Autores principales: | O’Dea, Eamon B., Drake, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847000/ https://www.ncbi.nlm.nih.gov/pubmed/35167769 http://dx.doi.org/10.1098/rsif.2021.0702 |
Ejemplares similares
-
Estimating the distance to an epidemic threshold
por: O'Dea, Eamon B., et al.
Publicado: (2018) -
Waiting time to infectious disease emergence
por: Dibble, Christopher J., et al.
Publicado: (2016) -
Anticipating infectious disease re-emergence and elimination: a test of early warning signals using empirically based models
por: Tredennick, Andrew T., et al.
Publicado: (2022) -
Pool dynamics of time-dependent compartmental systems with application to the terrestrial carbon cycle
por: Chappelle, George, et al.
Publicado: (2023) -
Replicative cellular age distributions in compartmentalized tissues
por: Böttcher, Marvin A., et al.
Publicado: (2018)