Cargando…
Learning Enhanced Feature Responses for Visual Object Tracking
Visual object tracking is an important topic in computer vision, which has successfully utilized pretrained convolutional neural networks, such as VGG and ResNet. However, the features extracted by these pretrained models are high dimensional, and the redundant feature channels reduce target localiz...
Autores principales: | Zhang, Runqing, Fan, Chunxiao, Ming, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847016/ https://www.ncbi.nlm.nih.gov/pubmed/35178074 http://dx.doi.org/10.1155/2022/1241687 |
Ejemplares similares
-
Retracted: Learning Enhanced Feature Responses for Visual Object Tracking
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning
por: Zhang, Dawei, et al.
Publicado: (2022) -
Visual Learning in Multiple-Object Tracking
por: Makovski, Tal, et al.
Publicado: (2008) -
HROM: Learning High-Resolution Representation and Object-Aware Masks for Visual Object Tracking
por: Zhang, Dawei, et al.
Publicado: (2020) -
Visual object tracking: Progress, challenge, and future
por: Zhang, Libo, et al.
Publicado: (2023)