Cargando…
Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction
BACKGROUND: Gastric cancer is one of the leading causes of cancer death in the world. Improving gastric cancer survival prediction can enhance patient prognostication and treatment planning. METHODS: In this study, we performed gastric cancer survival prediction using machine learning and multi-moda...
Autores principales: | Hao, Degan, Li, Qiong, Feng, Qiu-Xia, Qi, Liang, Liu, Xi-Sheng, Arefan, Dooman, Zhang, Yu-Dong, Wu, Shandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847133/ https://www.ncbi.nlm.nih.gov/pubmed/35186707 http://dx.doi.org/10.3389/fonc.2021.725889 |
Ejemplares similares
-
Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer
por: Li, Huanhuan, et al.
Publicado: (2021) -
Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes
por: Arefan, Dooman, et al.
Publicado: (2021) -
A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma
por: Yang, Lu, et al.
Publicado: (2022) -
Prognostic value of computed tomography radiomics features in patients with gastric neuroendocrine neoplasm
por: Yang, Zhi-hao, et al.
Publicado: (2023) -
Combination of clinical, radiomic, and “delta” radiomic features in survival prediction of metastatic gastroesophageal adenocarcinoma
por: Krishna, Satheesh, et al.
Publicado: (2023)