Cargando…
Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
The energy transmission through micropolar fluid have a broad range implementation in the field of electronics, textiles, spacecraft, power generation and nuclear power plants. Thermal radiation's influence on an incompressible thermo-convective flow of micropolar fluid across a permeable exten...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847364/ https://www.ncbi.nlm.nih.gov/pubmed/35169220 http://dx.doi.org/10.1038/s41598-022-06458-3 |
Sumario: | The energy transmission through micropolar fluid have a broad range implementation in the field of electronics, textiles, spacecraft, power generation and nuclear power plants. Thermal radiation's influence on an incompressible thermo-convective flow of micropolar fluid across a permeable extensible sheet with energy and mass transition is reported in the present study. The governing equations consist of Navier–Stokes equation, micro rotation, temperature and concentration equations have been modeled in the form of the system of Partial Differential Equations. The system of basic equations is reduced into a nonlinear system of coupled ODE's by using a similarity framework. The numerical solution of the problem has been obtained via PCM (Parametric Continuation Method). The findings are compared to a MATLAB built-in package called bvp4c to ensure that the scheme is valid. It has been perceived that both the results are in best agreement with each other. The effects of associated parameters on the dimensionless velocity, micro-rotation, energy and mass profiles are discussed and depicted graphically. It has been detected that the permeability parameter gives rise in micro-rotation profile. |
---|