Cargando…

Mechanical stress effects on transcriptional regulation of genes encoding microtubule- and actin-associated proteins

Plant cytoskeleton regulation has been studied using a new approach based on both (1) pharmacological analysis of tubulin and actin inhibitors and (2) mechanical stimulation achieved by using a slow-rotating (2 rpm) clinostat in combination with transcriptional analysis of genes encoding TUA6, ACT2,...

Descripción completa

Detalles Bibliográficos
Autores principales: Shevchenko, Galina V., Krutovsky, Konstantin V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer India 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847523/
https://www.ncbi.nlm.nih.gov/pubmed/35210715
http://dx.doi.org/10.1007/s12298-021-01123-x
Descripción
Sumario:Plant cytoskeleton regulation has been studied using a new approach based on both (1) pharmacological analysis of tubulin and actin inhibitors and (2) mechanical stimulation achieved by using a slow-rotating (2 rpm) clinostat in combination with transcriptional analysis of genes encoding TUA6, ACT2, MAP65-1, CLASP, PLDδ, FH4 and FH1 proteins in Arabidopsis thaliana seedling roots. The obtained data suggest feedback between the organization of microtubule (MT) and actin filament (AF) networks and the expression of the ACT2, TUA6, MAP65-1, CLASP and FH1/FH4 genes. Different regulation of feedback between MT/AF organization and TUA6, ACT2, MAP65-1, CLASP, FH4 and FH1 gene expression was noted during slow clinorotation, possibly due to altered mechanical impact on the cortical cytoskeleton. For the first time, the expression of the tubulin-associated gene MAP65-1 was shown to be dependent upon the organization of AFs. TUA6, MAP65-1, CLASP, FH1 and FH4 likely participate in mechanical signal transduction. Our work demonstrated that slow clinorotation is able to cause mechanical stress.