Cargando…
Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear mode...
Autores principales: | Cenedese, Mattia, Axås, Joar, Bäuerlein, Bastian, Avila, Kerstin, Haller, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847615/ https://www.ncbi.nlm.nih.gov/pubmed/35169152 http://dx.doi.org/10.1038/s41467-022-28518-y |
Ejemplares similares
-
Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems
por: Cenedese, M., et al.
Publicado: (2022) -
Bifurcation Control on the Un-Linearizable Dynamic System via Washout Filters
por: Zhai, Chi, et al.
Publicado: (2022) -
Root Causing Linearizability Violations
por: Çirisci, Berk, et al.
Publicado: (2020) -
Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations
por: Szalai, Robert, et al.
Publicado: (2017) -
Geometric characterization of linearizable second order differential equations
por: Martínez, E, et al.
Publicado: (1995)