Cargando…
Deep learning detection of nanoparticles and multiple object tracking of their dynamic evolution during in situ ETEM studies
In situ transmission electron microscopy (TEM) studies of dynamic events produce large quantities of data especially under the form of images. In the important case of heterogeneous catalysis, environmental TEM (ETEM) under gas and temperature allows to follow a large population of supported nanopar...
Autores principales: | Faraz, Khuram, Grenier, Thomas, Ducottet, Christophe, Epicier, Thierry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847623/ https://www.ncbi.nlm.nih.gov/pubmed/35169206 http://dx.doi.org/10.1038/s41598-022-06308-2 |
Ejemplares similares
-
Author’s reply (in reference to letter to editor proposed by Etem Caliskan, Catherine J. Pachuk, Louis P. Perrault, Maximilian Y Emmert and entitled: preservation solutions to improve graft patency: The devil is in the detail)
por: Fouquet, Olivier, et al.
Publicado: (2021) -
In situ analysis of nanoparticle soft corona and dynamic evolution
por: Baimanov, Didar, et al.
Publicado: (2022) -
Dynamic Multi-LiDAR Based Multiple Object Detection and Tracking
por: Sualeh, Muhammad, et al.
Publicado: (2019) -
Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking
por: Moraffah, Bahman, et al.
Publicado: (2022) -
DefectTrack: a deep learning-based multi-object tracking algorithm for quantitative defect analysis of in-situ TEM videos in real-time
por: Sainju, Rajat, et al.
Publicado: (2022)