Cargando…
MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis
In light of the rapid accumulation of large-scale omics datasets, numerous studies have attempted to characterize the molecular and clinical features of cancers from a multi-omics perspective. However, there are great challenges in integrating multi-omics using machine learning methods for cancer su...
Autores principales: | Li, Xiao, Ma, Jie, Leng, Ling, Han, Mingfei, Li, Mansheng, He, Fuchu, Zhu, Yunping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847688/ https://www.ncbi.nlm.nih.gov/pubmed/35186034 http://dx.doi.org/10.3389/fgene.2022.806842 |
Ejemplares similares
-
CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction
por: Zeng, Daojian, et al.
Publicado: (2021) -
Identification of functional gene modules by integrating multi-omics data and known molecular interactions
por: Chen, Xiaoqing, et al.
Publicado: (2023) -
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
por: Yin, Chaoyi, et al.
Publicado: (2022) -
LABAMPsGCN: A framework for identifying lactic acid bacteria antimicrobial peptides based on graph convolutional neural network
por: Sun, Tong-Jie, et al.
Publicado: (2022) -
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics
por: Song, Qianqian, et al.
Publicado: (2021)