Cargando…

A Silicon Valley love triangle: Hiring algorithms, pseudo-science, and the quest for auditability

In this perspective, we develop a matrix for auditing algorithmic decision-making systems (ADSs) used in the hiring domain. The tool is a socio-technical assessment of hiring ADSs that is aimed at surfacing the underlying assumptions that justify the use of an algorithmic tool and the forms of knowl...

Descripción completa

Detalles Bibliográficos
Autores principales: Sloane, Mona, Moss, Emanuel, Chowdhury, Rumman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848005/
https://www.ncbi.nlm.nih.gov/pubmed/35199067
http://dx.doi.org/10.1016/j.patter.2021.100425
Descripción
Sumario:In this perspective, we develop a matrix for auditing algorithmic decision-making systems (ADSs) used in the hiring domain. The tool is a socio-technical assessment of hiring ADSs that is aimed at surfacing the underlying assumptions that justify the use of an algorithmic tool and the forms of knowledge or insight they purport to produce. These underlying assumptions, it is argued, are crucial for assessing not only whether an ADS works “as intended,” but also whether the intentions with which the tool was designed are well founded. Throughout, we contextualize the use of the matrix within current and proposed regulatory regimes and within emerging hiring practices that incorporate algorithmic technologies. We suggest using the matrix to expose underlying assumptions rooted in pseudo-scientific essentialized understandings of human nature and capability and to critically investigate emerging auditing standards and practices that fail to address these assumptions.