Cargando…
Ranks underlie outcome of combining classifiers: Quantitative roles for diversity and accuracy
Combining classifier systems potentially improves predictive accuracy, but outcomes have proven impossible to predict. Classification most commonly improves when the classifiers are “sufficiently good” (generalized as “accuracy”) and “sufficiently different” (generalized as “diversity”), but the ind...
Autores principales: | Sniatynski, Matthew J., Shepherd, John A., Ernst, Thomas, Wilkens, Lynne R., Hsu, D. Frank, Kristal, Bruce S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848007/ https://www.ncbi.nlm.nih.gov/pubmed/35199065 http://dx.doi.org/10.1016/j.patter.2021.100415 |
Ejemplares similares
-
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
por: Sniatynski, Matthew J., et al.
Publicado: (2022) -
The diversity rank-score function for combining human visual perception systems
por: Schweikert, Christina, et al.
Publicado: (2016) -
M-ary Rank Classifier Combination: A Binary Linear Programming Problem
por: Vigneron, Vincent, et al.
Publicado: (2019) -
Classifying the absolute toral rank two case
por: Strade, Helmut
Publicado: (2017) -
Classifying the Absolute Toral Rank Two Case
por: Strade, Helmut
Publicado: (2009)