Cargando…
Synthetic data generation with probabilistic Bayesian Networks
Bayesian Network (BN) modeling is a prominent and increasingly popular computational systems biology method. It aims to construct network graphs from the large heterogeneous biological datasets that reflect the underlying biological relationships. Currently, a variety of strategies exist for evaluat...
Autores principales: | Gogoshin, Grigoriy, Branciamore, Sergio, Rodin, Andrei S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848551/ https://www.ncbi.nlm.nih.gov/pubmed/34814315 http://dx.doi.org/10.3934/mbe.2021426 |
Ejemplares similares
-
Intrinsic Properties of tRNA Molecules as Deciphered via Bayesian Network and Distribution Divergence Analysis
por: Branciamore, Sergio, et al.
Publicado: (2018) -
New Analysis Framework Incorporating Mixed Mutual Information and Scalable Bayesian Networks for Multimodal High Dimensional Genomic and Epigenomic Cancer Data
por: Wang, Xichun, et al.
Publicado: (2020) -
Analysis of high-resolution 3D intrachromosomal interactions aided by Bayesian network modeling
por: Zhang, Xizhe, et al.
Publicado: (2017) -
Dependency Between Protein–Protein Interactions and Protein Variability and Evolutionary Rates in Vertebrates: Observed Relationships and Stochastic Modeling
por: Wang, Xichun, et al.
Publicado: (2019) -
New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data
por: Gogoshin, Grigoriy, et al.
Publicado: (2017)