Cargando…
Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records
PURPOSE: Predictively diagnosing infectious diseases helps in providing better treatment and enhances the prevention and control of such diseases. This study uses actual data from a hospital. A multiple infectious disease diagnostic model (MIDDM) is designed for conducting multi-classification of in...
Autores principales: | Wang, Mengying, Wei, Zhenhao, Jia, Mo, Chen, Lianzhong, Ji, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848865/ https://www.ncbi.nlm.nih.gov/pubmed/35168624 http://dx.doi.org/10.1186/s12911-022-01776-y |
Ejemplares similares
-
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
por: Nagamine, Tasha, et al.
Publicado: (2020) -
Intelligent virtual case learning system based on real medical records and natural language processing
por: Wang, Mengying, et al.
Publicado: (2022) -
Applying deep neural networks to unstructured text notes in electronic medical records for phenotyping youth depression
por: Geraci, Joseph, et al.
Publicado: (2017) -
Leveraging unstructured data to identify hereditary angioedema patients in electronic medical records
por: Brouwer, Emily S., et al.
Publicado: (2021) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201)