Cargando…
CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer
BACKGROUND: Cervical cancer (CC) is the fourth aggressive tumor affecting women worldwide. Circular RNA (circRNA) is enrolled in CC process. This study aims to unveil the profiles of circ_101119 (circCDK17) in cell proliferation, migration, invasion, apoptosis and glycolysis in CC. METHODS: The expr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848895/ https://www.ncbi.nlm.nih.gov/pubmed/35168653 http://dx.doi.org/10.1186/s13048-022-00952-y |
Sumario: | BACKGROUND: Cervical cancer (CC) is the fourth aggressive tumor affecting women worldwide. Circular RNA (circRNA) is enrolled in CC process. This study aims to unveil the profiles of circ_101119 (circCDK17) in cell proliferation, migration, invasion, apoptosis and glycolysis in CC. METHODS: The expression levels of circCDK17, microRNA-1294 (miR-1294) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). The protein expression levels of YWHAZ, recombinant glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) were determined by western blot. Cell proliferation, migratory and invasive abilities and apoptosis were illustrated by cell counting kit-8 (CCK-8) assay, transwell assay and flow cytometry analysis, respectively. Cell lactate production, glucose uptake and adenosine 5'-triphosphate (ATP) level were severally elucidated by lactate assay kit, glucose assay kit and ATP detection kit. RESULTS: CircCDK17 expression and the mRNA and protein expression levels of YWHAZ were dramatically upregulated, while miR-1294 expression was obviously downregulated in CC tissues or cells compared with control groups. CircCDK17 silencing suppressed cell proliferation, migration, invasion and glycolysis, and induced cell apoptosis in CC; however, miR-1294 inhibitor restrained these effects. Additionally, circCDK17 was a sponge of miR-1294 and miR-1294 bound to YWHAZ. Furthermore, circCDK17 knockdown inhibited tumor formation in vivo. CONCLUSION: CircCDK17 knockdown repressed cell proliferation, migration, invasion and glycolysis, and promoted cell apoptosis via miR-1294/YWHAZ axis in CC. This finding provides a theoretical basis in studying circRNA-mediated therapy in CC. |
---|