Cargando…
Exploring a new class of singlet fission fluorene derivatives with high-energy triplets
In this study, we report strong experimental evidence for singlet fission (SF) in a new class of fluorene-based molecules, exhibiting two-branched donor–acceptor structures. The time-resolved spectroscopic results disclose ultrafast formation of a double triplet state (occurring in few picoseconds)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848920/ https://www.ncbi.nlm.nih.gov/pubmed/35308848 http://dx.doi.org/10.1039/d1sc07175k |
_version_ | 1784652353977188352 |
---|---|
author | Mencaroni, Letizia Carlotti, Benedetta Elisei, Fausto Marrocchi, Assunta Spalletti, Anna |
author_facet | Mencaroni, Letizia Carlotti, Benedetta Elisei, Fausto Marrocchi, Assunta Spalletti, Anna |
author_sort | Mencaroni, Letizia |
collection | PubMed |
description | In this study, we report strong experimental evidence for singlet fission (SF) in a new class of fluorene-based molecules, exhibiting two-branched donor–acceptor structures. The time-resolved spectroscopic results disclose ultrafast formation of a double triplet state (occurring in few picoseconds) and efficient triplet exciton separation (up to 145% triplet yield). The solvent polarity effect and the role of intramolecular charge transfer (ICT) on the SF mechanism have been thoroughly investigated with several advanced spectroscopies. We found that a stronger push–pull character favors SF, as long as the ICT does not act as a trap by opening a competitive pathway. Within the context of other widely-known SF chromophores, the unconventional property of generating high-energy triplet excitons (ca. 2 eV) via SF makes these materials outstanding candidates as photosensitizers for photovoltaic devices. |
format | Online Article Text |
id | pubmed-8848920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-88489202022-03-17 Exploring a new class of singlet fission fluorene derivatives with high-energy triplets Mencaroni, Letizia Carlotti, Benedetta Elisei, Fausto Marrocchi, Assunta Spalletti, Anna Chem Sci Chemistry In this study, we report strong experimental evidence for singlet fission (SF) in a new class of fluorene-based molecules, exhibiting two-branched donor–acceptor structures. The time-resolved spectroscopic results disclose ultrafast formation of a double triplet state (occurring in few picoseconds) and efficient triplet exciton separation (up to 145% triplet yield). The solvent polarity effect and the role of intramolecular charge transfer (ICT) on the SF mechanism have been thoroughly investigated with several advanced spectroscopies. We found that a stronger push–pull character favors SF, as long as the ICT does not act as a trap by opening a competitive pathway. Within the context of other widely-known SF chromophores, the unconventional property of generating high-energy triplet excitons (ca. 2 eV) via SF makes these materials outstanding candidates as photosensitizers for photovoltaic devices. The Royal Society of Chemistry 2022-02-02 /pmc/articles/PMC8848920/ /pubmed/35308848 http://dx.doi.org/10.1039/d1sc07175k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Mencaroni, Letizia Carlotti, Benedetta Elisei, Fausto Marrocchi, Assunta Spalletti, Anna Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title | Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title_full | Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title_fullStr | Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title_full_unstemmed | Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title_short | Exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
title_sort | exploring a new class of singlet fission fluorene derivatives with high-energy triplets |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848920/ https://www.ncbi.nlm.nih.gov/pubmed/35308848 http://dx.doi.org/10.1039/d1sc07175k |
work_keys_str_mv | AT mencaroniletizia exploringanewclassofsingletfissionfluorenederivativeswithhighenergytriplets AT carlottibenedetta exploringanewclassofsingletfissionfluorenederivativeswithhighenergytriplets AT eliseifausto exploringanewclassofsingletfissionfluorenederivativeswithhighenergytriplets AT marrocchiassunta exploringanewclassofsingletfissionfluorenederivativeswithhighenergytriplets AT spallettianna exploringanewclassofsingletfissionfluorenederivativeswithhighenergytriplets |