Cargando…

Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F(1)F(o)–adenosine 5′-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states...

Descripción completa

Detalles Bibliográficos
Autores principales: Demmer, Julius K., Phillips, Ben P., Uhrig, O. Lisa, Filloux, Alain, Allsopp, Luke P., Bublitz, Maike, Meier, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849298/
https://www.ncbi.nlm.nih.gov/pubmed/35171679
http://dx.doi.org/10.1126/sciadv.abl5966
Descripción
Sumario:The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F(1)F(o)–adenosine 5′-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F(1) subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded F(o) complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.