Cargando…

Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F(1)F(o)–adenosine 5′-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states...

Descripción completa

Detalles Bibliográficos
Autores principales: Demmer, Julius K., Phillips, Ben P., Uhrig, O. Lisa, Filloux, Alain, Allsopp, Luke P., Bublitz, Maike, Meier, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849298/
https://www.ncbi.nlm.nih.gov/pubmed/35171679
http://dx.doi.org/10.1126/sciadv.abl5966
_version_ 1784652433967808512
author Demmer, Julius K.
Phillips, Ben P.
Uhrig, O. Lisa
Filloux, Alain
Allsopp, Luke P.
Bublitz, Maike
Meier, Thomas
author_facet Demmer, Julius K.
Phillips, Ben P.
Uhrig, O. Lisa
Filloux, Alain
Allsopp, Luke P.
Bublitz, Maike
Meier, Thomas
author_sort Demmer, Julius K.
collection PubMed
description The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F(1)F(o)–adenosine 5′-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F(1) subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded F(o) complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.
format Online
Article
Text
id pubmed-8849298
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-88492982022-03-04 Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii Demmer, Julius K. Phillips, Ben P. Uhrig, O. Lisa Filloux, Alain Allsopp, Luke P. Bublitz, Maike Meier, Thomas Sci Adv Biomedicine and Life Sciences The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F(1)F(o)–adenosine 5′-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F(1) subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded F(o) complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen. American Association for the Advancement of Science 2022-02-16 /pmc/articles/PMC8849298/ /pubmed/35171679 http://dx.doi.org/10.1126/sciadv.abl5966 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Demmer, Julius K.
Phillips, Ben P.
Uhrig, O. Lisa
Filloux, Alain
Allsopp, Luke P.
Bublitz, Maike
Meier, Thomas
Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title_full Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title_fullStr Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title_full_unstemmed Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title_short Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii
title_sort structure of atp synthase from eskape pathogen acinetobacter baumannii
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849298/
https://www.ncbi.nlm.nih.gov/pubmed/35171679
http://dx.doi.org/10.1126/sciadv.abl5966
work_keys_str_mv AT demmerjuliusk structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT phillipsbenp structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT uhrigolisa structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT fillouxalain structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT allsopplukep structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT bublitzmaike structureofatpsynthasefromeskapepathogenacinetobacterbaumannii
AT meierthomas structureofatpsynthasefromeskapepathogenacinetobacterbaumannii