Cargando…

Efferent Copy and Corollary Discharge Motor Control Behavior Associated with a Hopping Activity

Hoppers respond not only to stimuli from the ground surfaces but also to cues generated by their own behaviors. This leads to desensitization because although the afferent and reafferent signals have distinct causes, they are carried by the same sensory channels. From a behavioral viewpoint, it may...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Wangdo, Veloso, António P, João, Filipa, Kohles, Sean S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849611/
https://www.ncbi.nlm.nih.gov/pubmed/35178286
http://dx.doi.org/10.4172/2165-7025.1000167
Descripción
Sumario:Hoppers respond not only to stimuli from the ground surfaces but also to cues generated by their own behaviors. This leads to desensitization because although the afferent and reafferent signals have distinct causes, they are carried by the same sensory channels. From a behavioral viewpoint, it may be necessary to distinguish between signals from the two causes especially when monitoring changes in the external environment separate from those due to self-movement. We were able to separate afferent sensory stimuli from self-generated, reafferent signals using an action-oriented perception system and dynamic programming approach. This effort addressed the question of how the nerve system selects which particular degree of freedom (DOF) to cancel reafferent input. We have proposed an internal one-DOF model characterizing the motor control system during hopping, allowing the generation of an estimated ground reaction signal to drive natural shock absorption of the leg.