Cargando…
Compound W-Net with Fully Accumulative Residual Connections for Liver Segmentation Using CT Images
Computed tomography (CT) is a common modality for liver diagnosis, treatment, and follow-up process. Providing accurate liver segmentation using CT images is a crucial step towards those tasks. In this paper, we propose a stacked 2-U-Nets model with three different types of skip connections. The pro...
Autores principales: | Khattab, Mahmoud Abdelazim, Liao, Iman Yi, Ooi, Ean Hin, Chong, Siang Yew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850044/ https://www.ncbi.nlm.nih.gov/pubmed/35186116 http://dx.doi.org/10.1155/2022/8501828 |
Ejemplares similares
-
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
R2U++: a multiscale recurrent residual U-Net with dense skip connections for medical image segmentation
por: Mubashar, Mehreen, et al.
Publicado: (2022) -
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
por: Zhang, Jiajing, et al.
Publicado: (2022) -
BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease
por: Hilbert, Adam, et al.
Publicado: (2020) -
Exploration of CT Images Based on the BN-U-net-W Network Segmentation Algorithm in Glioma Surgery
por: Yu, Yongmei, et al.
Publicado: (2022)