Cargando…
Structure, mechanism and lipid-mediated remodeling of the mammalian Na(+)/H(+) exchanger NHA2
The Na(+)/H(+) exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na(+)/Li(+) exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850199/ https://www.ncbi.nlm.nih.gov/pubmed/35173351 http://dx.doi.org/10.1038/s41594-022-00738-2 |
Sumario: | The Na(+)/H(+) exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na(+)/Li(+) exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion-exchange mechanism have been lacking. Here we report the cryo-EM structures of bison NHA2 in detergent and in nanodiscs, at 3.0 and 3.5 Å resolution, respectively. The bison NHA2 structure, together with solid-state membrane-based electrophysiology, establishes the molecular basis for electroneutral ion exchange. NHA2 consists of 14 transmembrane (TM) segments, rather than the 13 TMs previously observed in mammalian Na(+)/H(+) exchangers (NHEs) and related bacterial antiporters. The additional N-terminal helix in NHA2 forms a unique homodimer interface with a large intracellular gap between the protomers, which closes in the presence of phosphoinositol lipids. We propose that the additional N-terminal helix has evolved as a lipid-mediated remodeling switch for the regulation of NHA2 activity. |
---|