Cargando…

Head and Neck Squamous Cell Carcinoma Subtypes Based on Immunologic and Hallmark Gene Sets in Tumor and Non-tumor Tissues

BACKGROUND: Non-tumor tissue has a significant impact on the prognosis of head and neck squamous cell carcinoma (HNSCC). Previous studies for HNSCC have mainly focused on tumor tissue, greatly neglecting the role of non-tumor tissue. This study aimed to identify HNSCC subtypes and prognostic gene se...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Ji, He, Xinling, Xia, Hui, He, Lu, Li, Daiying, Hu, Lanxin, Zheng, Sihan, Huang, Yanlin, Li, Sen, Hu, Wenjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850349/
https://www.ncbi.nlm.nih.gov/pubmed/35187059
http://dx.doi.org/10.3389/fsurg.2022.821600
Descripción
Sumario:BACKGROUND: Non-tumor tissue has a significant impact on the prognosis of head and neck squamous cell carcinoma (HNSCC). Previous studies for HNSCC have mainly focused on tumor tissue, greatly neglecting the role of non-tumor tissue. This study aimed to identify HNSCC subtypes and prognostic gene sets based on activity changes of immunologic and hallmark gene sets in tumor and adjacent non-tumor tissues to improve patient prognosis. METHODS: In the study, we used gene set variation analysis (GSVA) to estimate the relative enrichment of gene sets over the sample population, and identified relevant subtypes of HNSCC by Cox regression analysis and the non-negative matrix factorization (NMF) method. The representative gene sets were identified by calculating the differential enrichment score of gene sets between each of the two subgroups, intersecting them, and screening them using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to screen out potential prognostic gene sets and establish a risk model. Finally, genes encompassed in each prognostic gene set were obtained and subjected to enrichment analysis and protein–protein interaction (PPI) in tumor and non-tumor tissues. RESULTS: We identified three subtypes of HNSCC based on gene sets in tumor and non-tumor tissues, and patients with subtype 1 had a higher survival rate than subtypes 2 and 3. The subtypes were related to the survival status, pathological stage, and T stage of HNSCC patients. In total 450 differentially gene sets and 39 representative gene sets were obtained by calculating the differential enrichment score of gene sets between each of the two subgroups, intersecting them, and screening them using univariate Cox regression analysis. The prognostic model was constructed by LASSO regression analysis, including five prognostic gene sets. Kaplan-Meier analysis indicated that different risk groups and the five prognostic gene sets were associated with survival status in the model. Finally, enrichment analysis and PPI indicated that non-tumor and tumor tissues affect the prognosis of HNSCC patients in different ways. CONCLUSION: In conclusion, we provide a novel insight for rational treatment strategies and precise prognostic assessments based on tumor and adjacent non-tumor tissues, suggesting that more emphasis should be placed on changes in adjacent non-tumor and tumor tissues, rather than just the tumor itself.