Cargando…
Spontaneous emergence of counterclockwise vortex motion in assemblies of pedestrians roaming within an enclosure
The emergence of coherent vortices has been observed in a wide variety of many-body systems such as animal flocks, bacteria, colloids, vibrated granular materials or human crowds. Here, we experimentally demonstrate that pedestrians roaming within an enclosure also form vortex-like patterns which, i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850453/ https://www.ncbi.nlm.nih.gov/pubmed/35173216 http://dx.doi.org/10.1038/s41598-022-06493-0 |
Sumario: | The emergence of coherent vortices has been observed in a wide variety of many-body systems such as animal flocks, bacteria, colloids, vibrated granular materials or human crowds. Here, we experimentally demonstrate that pedestrians roaming within an enclosure also form vortex-like patterns which, intriguingly, only rotate counterclockwise. By implementing simple numerical simulations, we evidence that the development of swirls in many-particle systems can be described as a phase transition in which both the density of agents and their dissipative interactions with the boundaries play a determinant role. Also, for the specific case of pedestrians, we show that the preference of right-handed people (the majority in our experiments) to turn leftwards when facing a wall is the symmetry breaking mechanism needed to trigger the global counterclockwise rotation observed. |
---|