Cargando…

Dual targeting micelles loaded with paclitaxel and lapatinib for combinational therapy of brain metastases from breast cancer

Due to the presence of the blood–brain barrier (BBB), the delivery of general drugs into the brain tissue remains to be a tricky problem. For patients with brain metastases from breast cancer, drug delivery systems must overcome this physical barrier. Targeted nano vehicles arise as a promising alte...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Heng, Chen, Tianran, Wang, Yiran, He, Yuwei, Pang, Zhiqing, Wang, Yajie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850478/
https://www.ncbi.nlm.nih.gov/pubmed/35173243
http://dx.doi.org/10.1038/s41598-022-06677-8
Descripción
Sumario:Due to the presence of the blood–brain barrier (BBB), the delivery of general drugs into the brain tissue remains to be a tricky problem. For patients with brain metastases from breast cancer, drug delivery systems must overcome this physical barrier. Targeted nano vehicles arise as a promising alternative to deliver drugs to brain tissues successively. Herein, a dual targeting micelle drug delivery system loaded with paclitaxel (PTX) and lapatinib (LPTN) was developed for combinational therapy of brain metastases. In our study, it was shown the micelles modified with Angiopep-2 had high loading efficiency of paclitaxel and lapatinib (Ang-MIC-PTX/LP). In addition, Ang-MIC-PTX/LP could transport across the in vitro BBB model and accumulate in breast cancer cells. After intravenous injection, Ang-MIC significantly accumulated in the brain metastasis. Ang-MIC-PTX/LP could also extend the life span of brain metastasis mouse models. Overall, this study provided a promising method for treatment of brain metastases from breast cancer.