Cargando…
Non-thermal plasma-assisted rapid hydrogenolysis of polystyrene to high yield ethylene
The evergrowing plastic production and the caused concerns of plastic waste accumulation have stimulated the need for waste plastic chemical recycling/valorization. Current methods suffer from harsh reaction conditions and long reaction time. Herein we demonstrate a non-thermal plasma-assisted metho...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850602/ https://www.ncbi.nlm.nih.gov/pubmed/35173177 http://dx.doi.org/10.1038/s41467-022-28563-7 |
Sumario: | The evergrowing plastic production and the caused concerns of plastic waste accumulation have stimulated the need for waste plastic chemical recycling/valorization. Current methods suffer from harsh reaction conditions and long reaction time. Herein we demonstrate a non-thermal plasma-assisted method for rapid hydrogenolysis of polystyrene (PS) at ambient temperature and atmospheric pressure, generating high yield (>40 wt%) of C(1)–C(3) hydrocarbons and ethylene being the dominant gas product (Selectivity of ethylene, S(C2H4) > 70%) within ~10 min. The fast reaction kinetics is attributed to highly active hydrogen plasma, which can effectively break bonds in polymer and initiate hydrogenolysis under mild condition. Efficient hydrogenolysis of post-consumer PS materials using this method is also demonstrated, suggesting a promising approach for fast retrieval of small molecular hydrocarbon modules from plastic materials as well as a good capability to process waste plastics in complicated conditions. |
---|