Cargando…
Brains and algorithms partially converge in natural language processing
Deep learning algorithms trained to predict masked words from large amount of text have recently been shown to generate activations similar to those of the human brain. However, what drives this similarity remains currently unknown. Here, we systematically compare a variety of deep language models t...
Autores principales: | Caucheteux, Charlotte, King, Jean-Rémi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850612/ https://www.ncbi.nlm.nih.gov/pubmed/35173264 http://dx.doi.org/10.1038/s42003-022-03036-1 |
Ejemplares similares
-
Author Correction: Brains and algorithms partially converge in natural language processing
por: Caucheteux, Charlotte, et al.
Publicado: (2023) -
Deep language algorithms predict semantic comprehension from brain activity
por: Caucheteux, Charlotte, et al.
Publicado: (2022) -
Evidence of a predictive coding hierarchy in the human brain listening to speech
por: Caucheteux, Charlotte, et al.
Publicado: (2023) -
Applied natural language processing with Python: implementing machine learning and deep learning algorithms for natural language processing
por: Beysolow, Taweh
Publicado: (2018) -
Constructed languages are processed by the same brain mechanisms as natural languages
por: Malik-Moraleda, Saima, et al.
Publicado: (2023)