Cargando…

Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer

OBJECTIVE: To explore the value of quantitative parameters derived from diffusion spectrum imaging (DSI) in preoperatively predicting human epidermal growth factor receptor 2 (HER2) status in patients with breast cancer. METHODS: In this prospective study, 114 and 56 female patients with invasive du...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Chunping, Jiang, Wei, Huang, Jiayi, Wang, Mengzhu, Yan, Xu, Yang, Zehong, Wang, Dongye, Zhang, Xiang, Shen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850631/
https://www.ncbi.nlm.nih.gov/pubmed/35186753
http://dx.doi.org/10.3389/fonc.2022.817070
_version_ 1784652641047937024
author Mao, Chunping
Jiang, Wei
Huang, Jiayi
Wang, Mengzhu
Yan, Xu
Yang, Zehong
Wang, Dongye
Zhang, Xiang
Shen, Jun
author_facet Mao, Chunping
Jiang, Wei
Huang, Jiayi
Wang, Mengzhu
Yan, Xu
Yang, Zehong
Wang, Dongye
Zhang, Xiang
Shen, Jun
author_sort Mao, Chunping
collection PubMed
description OBJECTIVE: To explore the value of quantitative parameters derived from diffusion spectrum imaging (DSI) in preoperatively predicting human epidermal growth factor receptor 2 (HER2) status in patients with breast cancer. METHODS: In this prospective study, 114 and 56 female patients with invasive ductal carcinoma were consecutively included in a derivation cohort and an independent validation cohort, respectively. Each patient was categorized into HER2-positive or HER2-negative groups based on the pathologic result. All patients underwent DSI and conventional MRI including dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). The tumor size, type of the time-signal intensity curve (TIC) from DCE-MRI, apparent diffusion coefficient (ADC) from DWI, and quantitative parameters derived from DSI, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator (MAP), and neurite orientation dispersion and density imaging (NODDI) of primary tumors, were measured and compared between the HER2-positive and HER2-negative groups in the derivation cohort. Univariable and multivariable logistic regression analyses were used to determine the potential independent predictors of HER2 status. The discriminative ability of quantitative parameters was assessed by receiver operating characteristic (ROC) curve analyses and validated in the independent cohort. RESULTS: In the derivation cohort, the tumor size, TIC type, and ADC values did not differ between the HER2-positive and HER2-negative groups (p = 0.126–0.961). DSI quantitative parameters including axial kurtosis of DKI (DKI_AK), non-Gaussianity (MAP_NG), axial non-Gaussianity (MAP_NG(Ax)), radial non-Gaussianity (MAP_NG(Rad)), return-to-origin probability (MAP_RTOP), return-to-axis probability of MAP (MAP_RTAP), and intracellular volume fraction of NODDI (NODDI_ICVF) were lower in the HER2-positive group than in the HER2-negative group (p ≤ 0.001–0.035). DSI quantitative parameters including radial diffusivity (DTI_RD), mean diffusivity of DTI (DTI_MD), mean squared diffusion (MAP_MSD), and q-space inverse variance of MAP (MAP_QIV) were higher in the HER2-positive group than in the HER2-negative group (p = 0.016–0.049). The ROC analysis showed that the area under the curve (AUC) of ADC was 0.632 and 0.568, respectively, in the derivation and validation cohorts. The AUC values of DSI quantitative parameters ranged from 0.628 to 0.700 and from 0.673 to 0.721, respectively, in the derivation and validation cohorts. Logistic regression analysis showed that only NODDI_ICVF was an independent predictor of HER2 status (p = 0.001), with an AUC of 0.700 and 0.721, respectively, in the derivation and validation cohorts. CONCLUSIONS: DSI could be helpful for preoperative prediction of HER2, but DSI alone may not be sufficient in predicting HER2 status preoperatively in patients with breast cancer.
format Online
Article
Text
id pubmed-8850631
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88506312022-02-18 Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer Mao, Chunping Jiang, Wei Huang, Jiayi Wang, Mengzhu Yan, Xu Yang, Zehong Wang, Dongye Zhang, Xiang Shen, Jun Front Oncol Oncology OBJECTIVE: To explore the value of quantitative parameters derived from diffusion spectrum imaging (DSI) in preoperatively predicting human epidermal growth factor receptor 2 (HER2) status in patients with breast cancer. METHODS: In this prospective study, 114 and 56 female patients with invasive ductal carcinoma were consecutively included in a derivation cohort and an independent validation cohort, respectively. Each patient was categorized into HER2-positive or HER2-negative groups based on the pathologic result. All patients underwent DSI and conventional MRI including dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). The tumor size, type of the time-signal intensity curve (TIC) from DCE-MRI, apparent diffusion coefficient (ADC) from DWI, and quantitative parameters derived from DSI, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator (MAP), and neurite orientation dispersion and density imaging (NODDI) of primary tumors, were measured and compared between the HER2-positive and HER2-negative groups in the derivation cohort. Univariable and multivariable logistic regression analyses were used to determine the potential independent predictors of HER2 status. The discriminative ability of quantitative parameters was assessed by receiver operating characteristic (ROC) curve analyses and validated in the independent cohort. RESULTS: In the derivation cohort, the tumor size, TIC type, and ADC values did not differ between the HER2-positive and HER2-negative groups (p = 0.126–0.961). DSI quantitative parameters including axial kurtosis of DKI (DKI_AK), non-Gaussianity (MAP_NG), axial non-Gaussianity (MAP_NG(Ax)), radial non-Gaussianity (MAP_NG(Rad)), return-to-origin probability (MAP_RTOP), return-to-axis probability of MAP (MAP_RTAP), and intracellular volume fraction of NODDI (NODDI_ICVF) were lower in the HER2-positive group than in the HER2-negative group (p ≤ 0.001–0.035). DSI quantitative parameters including radial diffusivity (DTI_RD), mean diffusivity of DTI (DTI_MD), mean squared diffusion (MAP_MSD), and q-space inverse variance of MAP (MAP_QIV) were higher in the HER2-positive group than in the HER2-negative group (p = 0.016–0.049). The ROC analysis showed that the area under the curve (AUC) of ADC was 0.632 and 0.568, respectively, in the derivation and validation cohorts. The AUC values of DSI quantitative parameters ranged from 0.628 to 0.700 and from 0.673 to 0.721, respectively, in the derivation and validation cohorts. Logistic regression analysis showed that only NODDI_ICVF was an independent predictor of HER2 status (p = 0.001), with an AUC of 0.700 and 0.721, respectively, in the derivation and validation cohorts. CONCLUSIONS: DSI could be helpful for preoperative prediction of HER2, but DSI alone may not be sufficient in predicting HER2 status preoperatively in patients with breast cancer. Frontiers Media S.A. 2022-02-03 /pmc/articles/PMC8850631/ /pubmed/35186753 http://dx.doi.org/10.3389/fonc.2022.817070 Text en Copyright © 2022 Mao, Jiang, Huang, Wang, Yan, Yang, Wang, Zhang and Shen https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Mao, Chunping
Jiang, Wei
Huang, Jiayi
Wang, Mengzhu
Yan, Xu
Yang, Zehong
Wang, Dongye
Zhang, Xiang
Shen, Jun
Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title_full Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title_fullStr Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title_full_unstemmed Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title_short Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
title_sort quantitative parameters of diffusion spectrum imaging: her2 status prediction in patients with breast cancer
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850631/
https://www.ncbi.nlm.nih.gov/pubmed/35186753
http://dx.doi.org/10.3389/fonc.2022.817070
work_keys_str_mv AT maochunping quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT jiangwei quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT huangjiayi quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT wangmengzhu quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT yanxu quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT yangzehong quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT wangdongye quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT zhangxiang quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer
AT shenjun quantitativeparametersofdiffusionspectrumimagingher2statuspredictioninpatientswithbreastcancer