Cargando…
Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2
Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to humans. Involvement in manifold intricate cellular networks and diverse pathophysiological functions make HtrA2 the most e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850690/ https://www.ncbi.nlm.nih.gov/pubmed/35187085 http://dx.doi.org/10.3389/fmolb.2022.824846 |
_version_ | 1784652654686765056 |
---|---|
author | Chakraborty, Ayon Bose, Roshnee Bose, Kakoli |
author_facet | Chakraborty, Ayon Bose, Roshnee Bose, Kakoli |
author_sort | Chakraborty, Ayon |
collection | PubMed |
description | Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to humans. Involvement in manifold intricate cellular networks and diverse pathophysiological functions make HtrA2 the most enigmatic moonlighting protease amongst the human HtrAs. Despite perpetuating the oligomeric architecture and overall structural fold of its homologs that comprises serine protease and regulatory PDZ domains, subtle conformational alterations and dynamic enzymatic regulation through the distinct allosteric mode of action lead to its functional diversity. This mitochondrial protease upon maturation, exposes its one-of-a-kind N-terminal tetrapeptide (AVPS) motif that binds and subsequently cleaves Inhibitor of Apoptosis Proteins (IAPs) thus promoting cell death, and posing as an important molecule for therapeutic intervention. Interestingly, unlike its other human counterparts, HtrA2 has also been implicated in maintaining the mitochondrial integrity through a bi-functional chaperone-protease activity, the on-off switch of which is yet to be identified. Furthermore, its ability to activate a wide repertoire of substrates through both its N- and C-terminal regions presumably has calibrated its association with several cellular pathways and hence diseases including neurodegenerative disorders and cancer. Therefore, the exclusive structural attributes of HtrA2 that involve multimodal activation, intermolecular PDZ-protease crosstalk, and an allosterically-modulated trimeric active-site ensemble have enabled the protease to evolve across species and partake functions that are fine-tuned for maintaining cellular homeostasis and mitochondrial proteome quality control in humans. These unique features along with its multitasking potential make HtrA2 a promising therapeutic target both in cancer and neurodegeneration. |
format | Online Article Text |
id | pubmed-8850690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88506902022-02-18 Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 Chakraborty, Ayon Bose, Roshnee Bose, Kakoli Front Mol Biosci Molecular Biosciences Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to humans. Involvement in manifold intricate cellular networks and diverse pathophysiological functions make HtrA2 the most enigmatic moonlighting protease amongst the human HtrAs. Despite perpetuating the oligomeric architecture and overall structural fold of its homologs that comprises serine protease and regulatory PDZ domains, subtle conformational alterations and dynamic enzymatic regulation through the distinct allosteric mode of action lead to its functional diversity. This mitochondrial protease upon maturation, exposes its one-of-a-kind N-terminal tetrapeptide (AVPS) motif that binds and subsequently cleaves Inhibitor of Apoptosis Proteins (IAPs) thus promoting cell death, and posing as an important molecule for therapeutic intervention. Interestingly, unlike its other human counterparts, HtrA2 has also been implicated in maintaining the mitochondrial integrity through a bi-functional chaperone-protease activity, the on-off switch of which is yet to be identified. Furthermore, its ability to activate a wide repertoire of substrates through both its N- and C-terminal regions presumably has calibrated its association with several cellular pathways and hence diseases including neurodegenerative disorders and cancer. Therefore, the exclusive structural attributes of HtrA2 that involve multimodal activation, intermolecular PDZ-protease crosstalk, and an allosterically-modulated trimeric active-site ensemble have enabled the protease to evolve across species and partake functions that are fine-tuned for maintaining cellular homeostasis and mitochondrial proteome quality control in humans. These unique features along with its multitasking potential make HtrA2 a promising therapeutic target both in cancer and neurodegeneration. Frontiers Media S.A. 2022-02-03 /pmc/articles/PMC8850690/ /pubmed/35187085 http://dx.doi.org/10.3389/fmolb.2022.824846 Text en Copyright © 2022 Chakraborty, Bose and Bose. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Chakraborty, Ayon Bose, Roshnee Bose, Kakoli Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title | Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title_full | Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title_fullStr | Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title_full_unstemmed | Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title_short | Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2 |
title_sort | unraveling the dichotomy of enigmatic serine protease htra2 |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850690/ https://www.ncbi.nlm.nih.gov/pubmed/35187085 http://dx.doi.org/10.3389/fmolb.2022.824846 |
work_keys_str_mv | AT chakrabortyayon unravelingthedichotomyofenigmaticserineproteasehtra2 AT boseroshnee unravelingthedichotomyofenigmaticserineproteasehtra2 AT bosekakoli unravelingthedichotomyofenigmaticserineproteasehtra2 |