Cargando…
Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
Cardiovascular disorders, including atrial fibrillation (AF) and congestive heart failure (CHF), are the significant causes of mortality worldwide. The diagnosis of cardiovascular disorders is heavily reliant on ECG signals. Therefore, extracting significant features from ECG signals is the most cha...
Autores principales: | Fuadah, Yunendah Nur, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850703/ https://www.ncbi.nlm.nih.gov/pubmed/35185594 http://dx.doi.org/10.3389/fphys.2021.761013 |
Ejemplares similares
-
An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Machine learning approach to evaluate TdP risk of drugs using cardiac electrophysiological model including inter-individual variability
por: Fuadah, Yunendah Nur, et al.
Publicado: (2023) -
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
por: Mahardika T, Nurul Qashri, et al.
Publicado: (2023) -
Advances in the management of atrial fibrillation in congestive heart failure
por: Gopinathannair, Rakesh, et al.
Publicado: (2009)