Cargando…
HIF-1α Alleviates High-Glucose-Induced Renal Tubular Cell Injury by Promoting Parkin/PINK1-Mediated Mitophagy
It is well-established that mitophagy leads to Diabetic Nephropathy (DN) and renal failure. Mitophagy mediated by a Hypoxia-inducible factor-1α (HIF-1α) plays a beneficial role in many diseases. Nevertheless, the mechanisms underlying HIF-1α-mediated mitophagy in DN remain unclear. This study define...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850720/ https://www.ncbi.nlm.nih.gov/pubmed/35186974 http://dx.doi.org/10.3389/fmed.2021.803874 |
Sumario: | It is well-established that mitophagy leads to Diabetic Nephropathy (DN) and renal failure. Mitophagy mediated by a Hypoxia-inducible factor-1α (HIF-1α) plays a beneficial role in many diseases. Nevertheless, the mechanisms underlying HIF-1α-mediated mitophagy in DN remain unclear. This study defines the role of HIF-1α mediated mitophagy in DN. The expression of HIF-1α was upregulated in HK-2 cells in an High-Glucose (HG) environment, and the YC-1 (a specific inhibitor of HIF-1α) further exacerbated the hypoxia-induced mitochondrial dysfunction. Conversely, the HIF-1α-mediated protective effect was strengthened by scavenger N-acetylcysteine (NAC), a type of reactive oxygen species. Moreover, HIF-1α-Parkin/PINK1-mediated mitophagy prevented apoptosis and ROS production in HK-2 cells subjected to HG exposure. In summary, HIF-1α mediated mitophagy on HK-2 cells under HG conditions could alleviate DN, suggesting that it has huge prospects for DN treatment. |
---|