Cargando…
Phenotype discovery from population brain imaging
Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of patterns of population variability in the brain has the potential to be extremely valuable for early disease diagnosis and understanding the brain. The resulting patterns can be used as imaging-deriv...
Autores principales: | Gong, Weikang, Beckmann, Christian F., Smith, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850869/ https://www.ncbi.nlm.nih.gov/pubmed/33905882 http://dx.doi.org/10.1016/j.media.2021.102050 |
Ejemplares similares
-
Accurate brain age prediction with lightweight deep neural networks
por: Peng, Han, et al.
Publicado: (2021) -
Optimising a Simple Fully Convolutional Network for Accurate Brain Age Prediction in the PAC 2019 Challenge
por: Gong, Weikang, et al.
Publicado: (2021) -
Hierarchical modelling of functional brain networks in population and individuals from big fMRI data
por: Farahibozorg, Seyedeh-Rezvan, et al.
Publicado: (2021) -
Telomere length and brain imaging phenotypes in UK Biobank
por: Topiwala, Anya, et al.
Publicado: (2023) -
Genome-wide association studies of brain imaging phenotypes in UK Biobank
por: Elliott, Lloyd T., et al.
Publicado: (2018)