Cargando…
EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks
Accurately inferring underlying electrophysiological (EP) tissue properties from action potential recordings is expected to be clinically useful in the diagnosis and treatment of arrhythmias such as atrial fibrillation. It is, however, notoriously difficult to perform. We present EP-PINNs (Physics I...
Autores principales: | Herrero Martin, Clara, Oved, Alon, Chowdhury, Rasheda A., Ullmann, Elisabeth, Peters, Nicholas S., Bharath, Anil A., Varela, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850959/ https://www.ncbi.nlm.nih.gov/pubmed/35187101 http://dx.doi.org/10.3389/fcvm.2021.768419 |
Ejemplares similares
-
Commentary: EP-PINNs: Cardiac electrophysiology characterisation using physics-informed neural networks
por: Meier, Stefan, et al.
Publicado: (2022) -
Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery
por: Lee, Munhwan, et al.
Publicado: (2019) -
Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
por: Inda, Adan Jafet Garcia, et al.
Publicado: (2022) -
Dr. Vivian Pinn: a woman pioneer & leader
por: Bachmann, Gloria, et al.
Publicado: (2021) -
Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling
por: Cantwell, Chris D., et al.
Publicado: (2019)