Cargando…
Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates
Cells can achieve internal organization by exploiting liquid-liquid phase separation to form biomolecular condensates. Here we focus on the surface properties of condensates composed of two multivalent associative polymers held together by one-to-one “sticker” bonds. Using coarse-grained molecular-d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851291/ https://www.ncbi.nlm.nih.gov/pubmed/35198903 http://dx.doi.org/10.1016/j.isci.2022.103852 |
_version_ | 1784652791468261376 |
---|---|
author | Pyo, Andrew G.T. Zhang, Yaojun Wingreen, Ned S. |
author_facet | Pyo, Andrew G.T. Zhang, Yaojun Wingreen, Ned S. |
author_sort | Pyo, Andrew G.T. |
collection | PubMed |
description | Cells can achieve internal organization by exploiting liquid-liquid phase separation to form biomolecular condensates. Here we focus on the surface properties of condensates composed of two multivalent associative polymers held together by one-to-one “sticker” bonds. Using coarse-grained molecular-dynamics simulations, we study the influence of component stoichiometry on condensate surface properties. We find that unequal stoichiometry results in enrichment of the majority species at the interface and a sharp reduction of surface tension. To relate these two effects, we show that the reduction in surface tension scales linearly with the excess concentration of free binding sites at the interface. Our results imply that each excess free site contributes an approximately fixed additional energy and entropy to the interface, with the latter dominating such that enrichment of free majority sites lowers the surface tension. Our work provides insight into novel physical mechanisms by which cells can regulate condensate surface properties. |
format | Online Article Text |
id | pubmed-8851291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88512912022-02-22 Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates Pyo, Andrew G.T. Zhang, Yaojun Wingreen, Ned S. iScience Article Cells can achieve internal organization by exploiting liquid-liquid phase separation to form biomolecular condensates. Here we focus on the surface properties of condensates composed of two multivalent associative polymers held together by one-to-one “sticker” bonds. Using coarse-grained molecular-dynamics simulations, we study the influence of component stoichiometry on condensate surface properties. We find that unequal stoichiometry results in enrichment of the majority species at the interface and a sharp reduction of surface tension. To relate these two effects, we show that the reduction in surface tension scales linearly with the excess concentration of free binding sites at the interface. Our results imply that each excess free site contributes an approximately fixed additional energy and entropy to the interface, with the latter dominating such that enrichment of free majority sites lowers the surface tension. Our work provides insight into novel physical mechanisms by which cells can regulate condensate surface properties. Elsevier 2022-02-01 /pmc/articles/PMC8851291/ /pubmed/35198903 http://dx.doi.org/10.1016/j.isci.2022.103852 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Pyo, Andrew G.T. Zhang, Yaojun Wingreen, Ned S. Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title | Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title_full | Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title_fullStr | Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title_full_unstemmed | Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title_short | Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
title_sort | surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851291/ https://www.ncbi.nlm.nih.gov/pubmed/35198903 http://dx.doi.org/10.1016/j.isci.2022.103852 |
work_keys_str_mv | AT pyoandrewgt surfacetensionandsuperstoichiometricsurfaceenrichmentintwocomponentbiomolecularcondensates AT zhangyaojun surfacetensionandsuperstoichiometricsurfaceenrichmentintwocomponentbiomolecularcondensates AT wingreenneds surfacetensionandsuperstoichiometricsurfaceenrichmentintwocomponentbiomolecularcondensates |